
PlanetenWachHundNetz:

Instrumenting Infrastructure for PlanetLab

Master’s Thesis Proposal

Vitus Lorenz-Meyer

Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA

email vdlorenz@utep.edu

1 Introduction

We are investigating distributed parallel prefix operations. Efficient implemen-

tations, like Google’s MapReduce [3] for example, utilize a reduction tree as

well as involve locality-aware algorithms. In a static network reduction trees

can be built once using a-priori known perfect proximity information and need

never be touched again. In highly dynamic environments, such as peer-to-peer

systems, this is substantially harder to achieve and maintain.

In related work two types of reduction trees for dynamic systems that both build

on structured overlays, also known as Distributed Hashtables (DHTs), seem to

be most prominent. Both of these structures are not concerned with exploiting

existing locality. We show how these data-structures can be augmented to be

more efficient and take advantage of locality information that might exist in the

underlying overlay.

Distributed parallel prefix can be used to aggregate and thus reduce data

from many sources. This is for example useful for statistics collection and

application-level monitoring. To validate our hypothesis we are building

an application-level data collection system, called PlanetenWachHundNetz

(PlanetenWachHundNetz (PWHN) — pronounced ’pawn’), which is German that

1



loosely translates to ’PlanetaryWatchDogNet’. Our initial evaluation will be

performed using FreePastry and Coral which is currently deployd on the Plan-

etLab testbed [10, 12].

2 Related Work

Work related to distributed parallel prefix can be broadly classified into the

following three categories:

1. Distributed Databases,

2. Aggregation Overlays, and

3. Sensor Networks.

Distributed Databases are systems that provide semantics approximating tra-

ditional Data-Base Management Systems (DBMS), in that they are designed to

allow the execution of arbitrary queries over distributed data.

Aggregation Overlays make data that is available on individual nodes available

to other nodes while reducing detail (and thus size) with growing distance.

This is achieved by a configurable aggregation operator. They are similar to

distributed DBMS in that most allow to execute operators that do not aggre-

gate but rather return an exact result.

Sensor Networks accomplish a slightly different goal. Sensor Networks try to

present a Database-like interface for a possibly large number of distributed sen-

sors. Sensors generate data that is kept moslty with them. A sensor network is

an overlay that organizes the sensors so that they can route among themselves

and providess the abilty to execute queries over the data. Consequently, Sensor

Networks exhibit a large overlap with both Distributed DBMS and Aggregation

Overlays. In contrast to the former two categories, however, the focus of most

Sensor Networks is shifted towards resource constrained sensors.

For a more detailed overview and some examples of these categories, see [9].

2



3 Hypothesis and Motivation

Parallel prefix is a class of operations that are amenable to parallelization and

thus distribution because of their associativity and communitivity. One appli-

cation of them is log or statistics collection of distributed applications, because

both tend be very homogenous and are therefore highly suitable for parallel

prefix operations that extract aggregate measures. Asking every participant in

a popular file-sharing network how many files he shares to extract the total

number of available files is an example.

Recent systems that can be used for this purpose mostly utilize a particular

implementation of an aggregation tree on top of a structured overlay. We ex-

plain how to enhance this data-structure to be efficient and locality-aware and

demonstrate this in our own implementation of an application-level aggregation

infrastructure for PlanetLab.

PlanetLab is a testbed for widely distributed networked applications that re-

searchers use to test these in vivo on the internet. It provides central services

for account creation and associated management, resource discovery and reser-

vation.

Additional services, like more complicated resource discovery or distributed soft-

ware deployment, are provided by applications that run in non-privileged Virtual

Machines. The fundamental abstraction that PlanetLab builds on is the abstrac-

tion of a Virtual Machine. A researcher’s account on PlanetLab is materialized

as a set of virtual machines running on all individual nodes the researcher asked

for. The union of all these VMs is called a slice, because it represents a ’slice’

of the resources available to PlanetLab on all its nodes at any given time. In-

frastructure services, i.e. those that provide resource discovery, reservation and

slice management services, run in an administrative slice. Everything else runs

in non-privileged slices.

Running experimental applications on a widely distributed set of machines nat-

urally comprises gathering log files and statistics for debugging and testing pur-

poses. Neither PlanetLab itself nor user contributed services provide this at the

moment.

3



Function Description
bool=PING() pings the called node
STORE(key,val) stores val under key at called node
nodes[]=FIND NODE(ID) returns up to k known closest nodes for ID
nodes[]=FIND VAL(key) like FIND NODE, except returns val when stored at called node

Table 1: RPC Interface of Kademlia

4 Goal: Method and design

4.1 Methodology

We are building an implemention of our novel data-structure that is going to be

used by an aplication-level monitoring facility for a self-organizing P2P system.

This facility called PWHN runs a service on every PlanetLab node that programs

running on PlanetLab can contact and request to have an aggregation tree built.

This tree can then be used to route and reduce en-route an applications log files.

By implementing a software on PlanetLab that provides this service we hope to

contribute to the PlanetLab community and to researchers using PlanetLab to

explore p2p.

We will implement PWHN using two different tree-like data-structures:

Firstly, a FingerTable-based Tree (FTT), which has been used by many

related systems (for example PIER [6, 7, 11] and SDIMS [13]), exploits the tree

that a DHT automatically builds by routing. The name comes from the fact

that the structure of this tree depends on the live nodes’ fingertables. It is the

closest ancestor to our novel data-structure.

As with a FTT, our proposed data-structure utilizes a tree whose structure

is directly derived from the key’s relations. Unlike the FTT approach, which

constructs only one global tree, our approach has the property to be able to

accomondate as many trees as needed. We call our implementation Key-based

MapReduce (KMR), because of its closeness to MapReduce. For a short de-

scription see subsubsection 4.2.2 and for a more elaborate explanation of it

please refer to the technical report ([8]).

4



Function Description
route(key,msg, hint) Routes msg to the node whose closest

to the given key using hint for the first hop
forward(&key,&msg,&nextHop) Function in the Application that is called

on each intermediate hop while routing towards key

deliver(key,msg Delivers a msg to the application on the node
that is closest to the key

node[] localLookup(key, num, safe) Produces a list of up to num nodes that can
be used as a next hop for routing towards the key

node[] neighboorSet(num) Returns up to num nodes from the local neighbor set
node[] replicaSet(key,maxRank) Returns nodes from the replica set for key

of nodes up to maxRank

update(node, joined) Function in the application that is called
whenever the local neighborhood changed

Table 2: KBR interface according to the Common API [2]

Both types of tree will be built using FreePastry [5], whereas only the KMR

can be built on Coral [1, 4]. A FTT aggregates the data in messages while

they are being routed by the DHT, and therefore needs to be notified when a

messsage is forwarded by the local node. In [2] the authors argue towards a

common API for DHTs, which includes that notification. FreePastry exports

the common API and is suitable to host a FTT as well a a KMR, whereas Coral

only exports the Kademlia API and can thus only accomodate a KMR. A KMR

just needs to be able to find the node that owns a particular key and Kademlia

exports a Find Node RPC call.

By implementing both types of trees on FreePastry we hope to be able to

quantify the advantages of our novel data-struture KMR. Building the KMR

both using Coral, which makes aggresive use of locality, as well as on FreePastry

should permit us to compare an intentionally locality choosing system with a

mere locality-aware one.

4.2 Design

4.2.1 PWHN

PWHN is an infrstructure for a p2p system that can be used to gather, aggre-

5



gate and route data from applications. Programs contact the local instance of

this service to set up an aggregation tree rooted at that node. They supply

executables for procurring, aggregating and evaluating data. This has the ad-

vantage that PWHN is able to collect and aggregate arbitrary data. The novel

data-structure that we plan to build on is briefly described in the next section.

4.2.2 KMR

A KMR is a tree that builds on the key-based routing Layer (KBR) of structured

routing overlays.

The KBR assigns unique, long (mostly 160) bit-strings (keys) to each node and

provides the ability to route messages towards a certain key. All that each node

on the forwarding-path of a message has to do is to guarantee to send it to

another node that is closer to the requested key. Once the closest node is found,

the routing algorithm terminates and the message is delivered.

The union of all possible paths (that is from all live nodes) towards a single key

forms a tree - a different one for each key - this is the Finger Table-based Tree

(FTT). Unfortunately, this tree is not guaranteed to be binary or balanced, and

moreover does not know anything about proximity.

By a small change in the routing algorithm it can be made balanced and binary

to a certain degree. Key-based routing works because of its flexibility to chose

the next hop from all candidates that are closer to the key. It is this flexibility

that allows the tree to be irregular. By restricting a nodes’ freedom of chosing

the next hop while routing to only one possible candidate, the tree of all routes

can be made binary and at the same time stochastically balanced.

Furthermore, we explain how this is complemented by giving the tree awareness

of its proximity space. For a more detailed description see [8].

5 Expected Results

5.1 Algorithmic

We are planning to build PWHN on top of an abstract tree interface that we will

implement using a FTT as well as a KMR. Additionally, we plan to implement

6



this abstract tree interface on top of two different Key-based routing layers.

The first one will be the Common API exported by FreePastry [5]. FreePastry’s

KBR supports locality only in chosing the lowest-latency links for its routing

table.

Secondly, we will implement the tree interface on top of Coral’s KBR. Coral

takes aggresive advantage of locality by explicitly partitioning its members into

clusters that contain nodes which fall within a certain range of connection la-

tency amongst them.

Thus, building on FreePastry as well as Coral provides us with the ability to

compare an aggresively locality-aware approach with a merely locality choosing

KBR. Furthermore, building a FTT as well as a KMR allows us to quantify the

advantages of building a binary, stochastically balanced aggregation tree.

5.2 Broader Impact

We identified two main points:

Firstly, by implementing and testing an infrastructure for application-level

monitoring we hope to be able to demonstrate the use of our novel data-struture.

This infrastructure provides a blueprint for efficient monitoring, that can be used

by developers to implement their own.

Secondly, by building PWHN we hope to help a researcher to set up experiments

quicker when using PlanetLab. Instead of having to take care of setting up her

own possibly inefficient application-level monitoring or aggregation facility, a

researcher can use PWHN. It provides a guaranteedly efficient, locality-aware

aggregation tree. By providing a central service for PlanetLab we will be able

to contribute something substantial to the PlanetLab community.

6 Future Work

Stronger security is a major point that future versions should include. Robust-

ness to byzantine failures, which is closely related to security, is an area that

currently draws much interest in the p2p community and needs to be addressed.

Another point is supplying more operators that work on XML Data and handle

7



common operations with tuples.

7 Evaluation

To inspect the system itself, we are going to use a tree build by PWHN itself

to collect and aggregate its logs. We will be using PWHN to instrument and

inspect Coral. This will allow us to suggest useful metrics, collect and publish

them, which will hopefully encourage others to use PWHN as well.

7.1 Locality

We are going to compare PWHN on Coral to PWHN on FreePastry in terms

of speed and generated traffic, thereby quantifying the usefulness of aggresive

locality-awareness. Specifically, we are going to look at

• The structure of the tree,

• latency of links used versus their number, and

• the total time for one iteration.

7.2 KMR

We will compare the effectiveness of using a KMR to using a mere FTT. This

will allow us to quantify the advantages of binarity and balancedness in an

aggregation tree. Specifically, we are going to look at

• The structure (fan-in) of the tree that is build, and

• the total time for one iteration.

8 Status and Timeplan

We are currently implementing the generic tree interface and the FTT on top

of FreePastry. The time over the summer will be used to get this initial version

running as an aggregation aid and test it using Coral’s logs. Additionally, over

the summer we plan to implement the KMR on the tree interface. We will also

8



implement the KMR on top of Coral. The beginning of the fall semester will see

us testing the three different results and finishing the thesis. I plan to defend

at the end of the month September.

9 Deliverables

1. The source code of PWHN that is written mostly in Java, and

2. the finished written Thesis.

References

[1] CoralCDN. http://www.coralcdn.org/. Valid on 13.9.2006. 5

[2] F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common API
for structured peer-to-peer overlays, Feb. 2003. URL citeseer.ist.psu.
edu/dabek03towards.html. 5

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI), San Francisco, Calif., Dec. 2004. 1

[4] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content
publication with coral. In Proceedings of the 1st USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI), San Francisco,
CA, Mar. 2004. 5

[5] FreePastry. http://www.freepastry.org/. Valid on 13.9.2006. 5, 7

[6] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and I. Stoica.
Querying the internet with PIER. In Proceedings of 19th International
Conference on Very Large Databases (VLDB), Sept. 2003. URL citeseer.
ist.psu.edu/huebsch03querying.html. 4

[7] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER:
an internet-scale query processor. In The Second Biennial Conference on
Innovative Data Systems Research (CIDR), Jan. 2005. URL citeseer.
ist.psu.edu/huebsch05architecture.html. 4

[8] V. Lorenz-Meyer and E. Freudenthal. The quest for the holy grail of aggre-
gation trees: Exploring prefix overlay(d) treasure-maps. Technical report,
UTEP, Texas, Mar. 2006. URL http://rlab.cs.utep.edu/∼vitus. Un-
published paper. 4, 6

9

http://www.coralcdn.org/
citeseer.ist.psu.edu/dabek03towards.html
citeseer.ist.psu.edu/dabek03towards.html
http://www.freepastry.org/
citeseer.ist.psu.edu/huebsch03querying.html
citeseer.ist.psu.edu/huebsch03querying.html
citeseer.ist.psu.edu/huebsch05architecture.html
citeseer.ist.psu.edu/huebsch05architecture.html
http://rlab.cs.utep.edu/~vitus


[9] V. Lorenz-Meyer and E. Freudenthal. The field of distributed query exe-
cuting, data aggregating and system monitoring. Unpublished, Mar. 2006.
URL http://rlab.cs.utep.edu/∼vitus. Unpublished paper. 2

[10] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint for in-
troducing disruptive technology into the internet. In Proceedings of the 1st
Workshop on Hot Topics in Networks (HotNets-I), Princeton, New Jersey,
Oct. 2002. URL citeseer.ist.psu.edu/peterson02blueprint.html. 2

[11] PIER. http://pier.cs.berkeley.edu/. Valid on 13.9.2006. 4

[12] PlanetLab. http://www.planet-lab.org. Valid on 13.9.2006. 2

[13] P. Yalagandula and M. Dahlin. A scalable distributed infor-
mation management system, 2003. URL citeseer.ist.psu.edu/
yalagandula03scalable.html. 4

A

ACL Access Control List

ADHT Autonomous DHT

ADT Abstract Data Type

AO Aggregation Overlay

API Application Programming Interface

C

CDN Content Distribution Network

C.S. Computer Science

D

DBMS Database Management System

DHT Distributed Hash Table (see ??)

DNS Domain Name System

DSHT Distributed Sloppy Hashtable

F

FC Fedora Core

FTP File Transfer Protocol

FTT FingerTable-based Tree (see ??)

G

10

http://rlab.cs.utep.edu/~vitus
citeseer.ist.psu.edu/peterson02blueprint.html
http://pier.cs.berkeley.edu/
http://www.planet-lab.org
citeseer.ist.psu.edu/yalagandula03scalable.html
citeseer.ist.psu.edu/yalagandula03scalable.html


GUI Graphical User Interface

I

ICMP Internet Control and Message Protocol

IDL Interface Definition Language

IP Internet Protocol

ISEP International Student Exchange Program

K

KBR Key-Based Routing layer (see ??)

KBT Key-Based Tree (see ??)

KMR Key-based MapReduce (see ??)

L

LAN Local Area Network

LGPL Lesser General Public License

M

MAC Media Access Control

MB MegaByte

MIB Management Information Base

N

NAT Network Address Translation

NMSU New Mexico State University

O

OA Organizing Agent

ONC Open Network Computing (see ??)

OS Operating System

P

P2P Peer-to-Peer

PIER P2P Information Exchange & Retrieval

PLC PlanetLab Central (see ??)

11



PLMR PlanetLab-MapReduce

PWHN PlanetenWachHundNetz

R

RADC Research and Academic Data Center

RFC Request for Comments

RO Routing Overlay

RPC Remote Procedure Call

RPM Redhat Package Manager

RTT Round Trip Time

S

SA Sensing Agent

SDIMS Scalable Distributed Information Management System

SNMP Simple Network Management Protocol

SOMO Self-Organized Metadata Overlay

SQL Structured Query Language

SSH Secure SHell

T

TAG Tiny AGgregation service

TCP Transmission Control Protocol

TLD Top Level Domain

TTL Time-To-Live

U

UDP Universal Datagram Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

UTEP University of Texas at El Paso

V

VM Virtual Machine

12



X

XDR eXternal Data Representation

XML eXtensible Markup Language

13


	Introduction
	Related Work
	Hypothesis and Motivation
	Goal: Method and design
	Methodology
	Design
	PWHN
	KMR


	Expected Results
	Algorithmic
	Broader Impact

	Future Work
	Evaluation
	Locality
	KMR

	Status and Timeplan
	Deliverables
	Glossary

