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Abstract

Collecting data from a network of distributed information sources is

common to a multitude of problems. A common problem in these systems

is the sheer amount of data that can easily overload any single node. A

possible solution to this problem is to reduce the data by aggregation close

to its source. As this is most easily done through an overlayed reduction

tree most systems build an overlay for this.

With the widespread use of Peer-to-Peer (P2P)-style applications this has

become evermore complicated, because of their highly dynamic nature.

Distributed Hash Tables (DHTs), also called Structured Overlays (for ex-

ample CAN [6]), have solved the problem of routing in dynamic, unstruc-

tured networks.

In this technical report we present a solution to the problem of maintain-

ing an efficient reduction tree in a dynamic network using a structured

overlay.

Distributed systems are generally designed to satisfy a target problem’s re-

quirements. These requirements frequently do not include instrumentation of

the system itself. As a result, the designs typically do not include instrumenta-

tion infrastructure, which makes tuning and debugging difficult. Furthermore,

focusing upon adding this infrastructure might distract an engineer from de-
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signing for performance and thus can introduce an unacceptably high overhead

to the system even when it is not used - compared to a system designed without

instrumentation in mind. The objective of PlanetenWachHundNetz (PWHN) is

to develop infrastructure suitable to assist the instrumentation of self-organizing

distributed applications that lack data collection and aggregation mechanisms.

The instrumentation and tuning of P2P systems can require the analyses

of data collected from a large number of nodes. If the data has not been se-

lected and aggregated properly by the providing nodes, the resulting amount

of data may be too large to use available communication and storage capabili-

ties. Moreover, if it is sent to a single, central collection point for analysis, that

node’s resources might become saturated. Therefore, centralized solutions may

be impractical. Thus, it may be desirable to aggregate summaries of data in

a distributed manner, avoiding the saturation of a “master” host who would

directly transmit instructions to and receive data from all of the other (slave)

nodes.

Google’s MapReduce was designed for the distributed collection and analysis

of very large data-sets, in environments with groupings of participants located

in dedicated computation centers that are known a-priori. A user of MapReduce

specifies arbitrary programs for its map and reduce phases. The Map phase “se-

lects” the data to be aggregated and outputs them in the form of intermediate

key/value pairs; afterwards, the Reduce phase digests these tuples grouped by

their key into the final output. These selection and aggregation programs can

frequently be easily constructed using the many convenient scripting programs

commonly available on unix systems and then linked against the MapReduce

library (written in C++).

PWHN extends the MapReduce model to P2P. The primary difference be-

tween the environment MapReduce was designed for and P2P-networks is that

the set of active participants and their logical groupings frequently changes in

P2P systems. Conventional approaches of pre-structuring aggregation and distri-

bution trees are inappropriate given P2P system’s large churn1 of membership.
1Churn means the characteristic of a normal P2P system that nodes frequently join and

leave; thus, the membership “churns”
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A measuring infrastructure for distributed systems faces the challenges of

selection and aggregation of relevant data under churn, while ensuring good

usability.

PWHN utilizes P2P techniques including Key-Based Routing layers (KBRs)

and a data-structure that extends existing algorithms for guiding the construc-

tion of an aggregation tree upon the internal structure of DHTs.

0.1 Coral

Consider Coral [1], a load-balancing P2P-Content Distribution Network (CDN)

implemented as a HTTP proxy for small-scale servers that cannot afford large-

scale dedicated solutions like akamai. It is referenced by many private websites

and provides high availability. Like many distributed applications Coral’s con-

struction does not include instrumenting and logging infrastructure, thus it is

hard to hard to tune and determine its limits of scalability. After this was dis-

covered, a logging and collection infrastructure was crafted onto Coral. This

approach was centralized, a central server outside of Coral just requested all

logs and inserted them into a database. This technique did not scale well and

was therefore discontinued quickly.

We learned of Coral’s misfortune and decided that it is a hard problem to

collect and aggregate statistics about a P2P application. It was my motivation

to build a system to make this process easier for application designers.

1 The world before Prefix-Suffix

This section introduces two different data-structures that researchers use to

build an aggregating system on top of a key-based structured overlay.

1.1 Quester 1: KBT

Almost all DHTs, sometimes referred to as Prefix-based Overlays or Structured

Overlays, build on Plaxton et al.’s [5] groundbreaking paper (because of the first

letters of the author’s surnames - Plaxton, Rajaraman, and Richa - known as

PRR) on routing in unstructured networks.
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Key-Based Trees (KBTs) use the internal structure of the trees that Plaxton-

style [5] systems automatically build for routing in the following way. These

key-based routing protocols populate a flat identifier space by assigning long

bit-strings to hosts and content which are simply 160-bit integer identifiers. Two

keys that have n most significant bits of their IDs in common are described to

have a “common prefix” of length n. Thus, “prefixes” of IDs function as “search

guides” since they are prefixes of actual node keys. Now consider the following.

Each node is the root of its own “virtual” tree. Both nodes at depth n have

(n− 1)-bit prefixes in common with their root, while the next (nth) bit is 0 for

the left and 1 for the right child. The result is a global, binary tree.

This assumes that the DHT fixes exactly one bit per hop. DHTs that fix

more than one bit per hop will have a correspondingly higher branching factor.

Since actual nodes will always have complete bit-strings, all internal nodes that

are addressable by a prefix are “virtual,” in the sense of the tree. The physical

nodes are the leafs of the tree and can be reached from the root (“empty prefix”)

by a unique path. Since the relationship between tree nodes and their place in

the ID-space is unambiguous, meaning that the tree is fully defined by a set of

node keys, I have termed this data-structure Key-Based Tree (KBT).

Each DHT defines a distance metric that defines “nearby” nodes and guides

searches.

Two examples of systems that use KBTs are Willow [7] and SOMO [9].

1.1.1 Classification

The designers of an implementation of a KBT define its tie-breaking behavior,

meaning which child will be responsible for its “virtual” parent, since both

children match their parents’ prefix. There are two basic approaches.

1. Static algorithms are deterministic for the same set of nodes and can only

change if that set changes.

2. Dynamic algorithms determine the parent based on characteristics of the

involved nodes, i.e. “in-vivo” (may even be evaluated in the form of

queries). This has the effect that the choice is not deterministic, i.e. can

be different for the same set of nodes, and can change during its lifetime.
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Figure 1: Sample KBT with six nodes using a 3-bit wide ID-space and a static
approach in which the left child assumes the parent role (“Left-Tree”). The
bottom part of the figure shows the “virtual” tree, whereas the top part shows
the resulting real messaging routes.

Choices of a dynamic approach are based on age, reliability, load, bandwidth

or based on a changeable query. Static algorithms can only choose the node that

is closest to a a deterministic point of the region (e.g. left, right, center). A static

choice has the advantage of predictability, provided you have a rough estimate

about the number of nodes. This predictability allows making informed guesses

about the location of internal nodes in the ID space.

1.2 Quester 2: FTT

Routing towards a specific ID in key-based, structured overlays works by in-

creasing the common prefix between the current hop and the target key until

the node with the longest matching prefix is reached. The characteristic of
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DHTs, that a message from every node towards a specific ID takes a slightly

different path, leads to the realization that the union of all these paths repre-

sents another tree which covers all live nodes - a different one for each ID. Thus,

unlike KBTs, where the mapping nodes and the tree is fully defined by the set

of node IDs, this tree is ambiguous - i.e. is dependent on finger table content.

These trees are like inverted KBTs; the exact node with the longest matching

prefix is the root, whereas in a KBT every node could be the root depending on

its tie-breaking algorithm, since every ID matches the empty prefix. Since this

tree depends on the fingertables of all live nodes, I call it a FingerTable-based

Tree (FTT).
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Figure 2: Top: Example graphical representation of all paths from 6 nodes to-
wards Key(111) for a 3-bit wide ID-Space (the matching prefix is highlighted on
each node and the corrected bit on each route), and the resulting FTT (bottom)

Example systems that use FTTs are PIER [2, 3, 4] and SDIMS [8].
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1.2.1 Classification

FTTs can be classified by their result-forwarding strategy: i.e. at what time

aggregated results are sent to the parent. There are two possible options for

this parameter:

1. Directly after child-update: The new result is sent to the parent directly

after a child sends new data. This necessitates caching of incomplete

results for running queries.

2. After children complete: New result is only sent to the parent after it is

sufficiently complete (or stabilized). This necessitates a guess about the

number of children which is another parameter when using this option.

KBTs are binary if the underlying DHT fixes one bit per hop and every node

will be at the same depth i, with i = Number of bits in ID. But generally

they are not balanced.

FTTs on the other hand will never be balanced, and not all nodes will be at the

same level. Moreover, they do not have to be binary. However, FTTs have the

advantages of allowing more than one FTT at a given time, and the ability to

being rooted at any node over KBTs.

These properties make the usefulness of both trees as aggregation aids question-

able.

2 The Quest for Aggregation: Engineering the

Holy Grail

2.1 Competitor’s skeletons lining the mountain way

The Problem with both the aforementioned types of trees is that they do not

have to be regular. While a FTT is certainly the better data-structure for aggre-

gation, it even does not have to be binary. But being binary or having a strong

upper bound on the branching factor is a characteristic which comes in very

handy in trees that are meant for reducing data, because it helps preventing

’hot-spots’ in the tree. Hot-spots are introduced by uneven load distribution in
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the tree, i.e. some nodes that have higher fan-in than others.

A FTT that is not binary results from the underlying DHTs flexibility in chos-

ing the next hop while routing. This flexibility ensures that a DHT is able to

maintain its routing invariant. But at the same time it severely restricts the

applicability of a DHTs underlying tree-structure to aggregation. We would like

to subtly change the DHTs tree or build a new one on top of the KBR in such a

way that it is regular only for reducing purposes while still preserving the KBRs

ability of efficient routing.

2.2 In the Hall of the Mountain King: KMR

We seek a data-structure that combines the FTTs load-balancing feature with the

determisn of a KBT. Since the FTT is defined by the entries of all participating

nodes’ fingertables, it is not predictable and may fluctuate frequently. This

stems from the fact that the DHT needs some flexibility to be able to keep

routing in the presence of churn.

A DHTs flexibility in routing means that it can pick the next hop from all

those that have one more matching prefix bit. Thus the length of the prefix

is inversely proportional to the number of candidate nodes. Consequently, the

length of the suffix (the remaining bits after the prefix) is directly proportional

to the number of eligible nodes. For k suffix bits the number of candidates is

2k.

This leads to a solution which consists of a KBT rooted at a particular key.

Since the number of candidates is directly proportional to the length of the

suffix and we would like this number to be exactly one, we need to reduce the

length of the suffix. This can be done by “fixing” it to the current node’s suffix.

For example, in a “normal” DHT, a node with ID= 000 that wants to route

a message to Key(111) has four choices for the next hop, those that match

1XX. Fixing the prefix and suffix to those of the current nodes, while still

flipping the next bit (i.e. adding one more prefix bit) essentially reduces the

number of routing candidates to one. Continuing the example, node(000) will

have to route the message to node(100) because that corrects the next bit of

the (currently empty) prefix and keeps the same suffix. This ensures that the
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resulting tree will be balanced and have a strong upper bound on the branching-

factor of len(ID) for a fully populated ID-space. This data-structure bears

strong similarity to MapReduce, albeit keyed with a certain ID, thus I call it

Key-based MapReduce (KMR).

A KMR is a subset of a KBT because a KMR is fully described by the set of

nodes and the root key, whereas the KBT can have any permutation of the nodes

with the constraint that all nodes in a subtree have the same bit at the respective

level of the subtree’s root. For n levels a = 1 · 2n + 2 · 2n−1 + · · ·+ 2 · 22 + 2 · 21

different KBTs are possible. Specifically, this means that a KBT with a set of

nodes has a chance of p = 1
a to look like the KMR with the same set of nodes.
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Figure 3: Example of a KMR (the flipped bit is highlighted at each level) for a
3-bit wide ID-Space, all nodes present, for Key(111)

(For homogeneity I will always represent KMRs such that the root node is the left

child, thus the right child always has the corresponding bit of the root flipped. This

structure is sometimes called a Left-Tree.)

2.2.1 The long way down

In the dissemination phase, a message has to be routed from the root of the

tree to all leafs. It is done recursively. This is particularly easy due to the

characteristic of a KMR that each internal node is its own parent if it has the
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Figure 4: Explanation of the dissemination phase of a KMR rooted at Key(101)

same suffix as the root at the corresponding level, which in my representations

will always be the left child. Each parent (root of a subtree) will be its own left

child all the way down, and thus only needs to send the message to each of its

(right) siblings. Since the length in bits of the suffix of a node will determine its

level in the tree, this is the number of messages it needs to send. Thus, every

node sends exactly P messages, where P =len(suffix), to other nodes according

to the following algorithm.

Listing 1: Algorithm for the dissemination phase of a KMR

1 f o r (k = len ( s u f f i x ) ; k >= 0; k−−)
route ( OwnID ˆ (1 << k) ) ;

The algorithm starts at the node with the longest matching prefix and flip

bits in the prefix “from the front,” thus doing the opposite from the aggregation

phase: subtracting bits of the matching suffix. The algorithm sends as many

messages as there are bits in the prefix.

Unfortunately, most DHTs will not have a fully populated ID-space. To

prevent nodes from trying to route to a large number of non-existent nodes,
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which in a normal DHT would end up storing the same value over and over

under different keys at a few nodes, an application building a KMR on a DHT

would try to get access to the underlying fingertable and KBR Layer. There are

two ways to solve this dilemma.

First, adding a single function to the DHTs interface allows an application to

build a KMR on it. Since the application needs to find nodes without actually

storing data on them, which would be the (unwanted) side-effect of a put, the

function takes a key and returns the closest node to that key. Thus, it is called

FIND NODE.

After the parent of a subtree has determined the closest node to one of its

children it was looking for, it just sends the message to that node instead (let us

call that node A). This node has to assume the role of its non-existent parent

and resends the message to all the children that its parent would have sent it

to. Fortunately, due to the fact that the node, by virtue of getting this message

for its parent, now knows that it is the closest ancestor to its parent, it is able

to discern which of its siblings cannot be there. These are all the nodes who

would have been closer to the original parent. Thus, A only has to resend the

message to all of the direct children (of its parent) whose IDs are further from

their parent’s ID. In the representation I use in this paper, these happen to be

all of A’s parent’s children to A’s right.

The aforementioned leads to the second solution. If the application has ac-

cess to the KBR and has the ability to route messages without side-effects it

does not need FIND NODE. All the messages that the node tries to send to

non-existent nodes will either return to the sender or the next closest node to

its right. An application keeps track of received messages and disregards mes-

sages that it had already seen. The node that receives messages destined for a

non-existent node not send by itself knows that it has to assume its parents role

and continues as outlined above. Should a node get the message that it itself has

sent to one of its children, it can immediately deduce that there can be no more

nodes in that subtree because all nodes in a subtree share the characteristic of

having the same next bit; thus any of these nodes would have been closer to

any other.
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A KMR only looks binary in a certain representation, but on the other hand,

it provides a strong upper-bound on its arity for each node, whereas KBTs/FTTs

do not. This arity is the width of the ID-space - 1 for the root of the tree and

decreases by 1 at each level. The first approach previously outlined has the

ability to find existent nodes and will thus only send necessary messages. The

second approach has to blindly send the maximum number of messages, many

of which will end up at the same node. As soon as the next node down the chain

determines all those nodes that cannot be there, this cuts down the number of

messages that need to be sent. It still has to send messages to all of its parent’s

children that are to its right.

2.2.2 The stony way up
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Figure 5: Graphic explanation of the aggregation phase of a KMR rooted at
Key(001)

The aggregation phase works exactly opposite to the dissemination phase.

To work the way up the tree, every node only needs to send one message but

has to wait for as many messages as it sent in the dissemination phase to arrive.
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An estimate of the number of messages can be made using the global number

of nodes as a statistical hint, if that number is unknown using the distance

to the root as a rough estimate, or by using the fingertable. Then, each node

sends one message to its immediate parent in the tree according to the following

algorithm.

Listing 2: Algorithm for the aggregation phase of a KMR

route ( OwnID ˆ (1 << l en ( s u f f i x ) ) ;

In a KMR routing “up” the tree is done by fixing both pre- and suffix and

flipping bits in the suffix “from the rear,” i.e. adding bits to the front of the

matching suffix.

Since, as already mentioned above, the ID-space will most likely not be fully

populated, this algorithm will again end up trying to route a lot of messages to

non-existent nodes. This can be avoided in the following way.

A naive way is to remember where the message in the dissemination phase

came from and just assume that the parent is still good while aggregating.
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Figure 6: Summary of the both the aggregation phase and the dissemination
phase of a KMR rooted at Key(101)
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3 Acronyms

CDN Content Distribution Network

DHT Distributed Hash Table (see ??)

FTT FingerTable-based Tree (see ??)

KBR Key-Based Routing layer (see ??)

KBT Key-Based Tree (see ??)

KMR Key-based MapReduce (see ??)

P2P Peer-to-Peer

PWHN PlanetenWachHundNetz
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