
The Field of distributed Query Executing, Data Aggregating and

System Monitoring

Vitus Lorenz-Meyer and Eric Freudenthal

Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA

emails {vdlorenz, efreudenthal}@utep.edu

Abstract

Peer-to-Peer (P2P) systems have been used for a va-

riety of purposes including monitoring of large, dis-

tributed systems. These monitoring systems have a

range of features. Some aggregate data to be scal-

able, others strive to be as versatile as possible by

providing a complete SQL-like execution engine, and

still others just pass data around. Some use Dis-

tributed Hash Table (DHT) as a routing abstraction,

some build trees (sometimes on-top of a DHT), and

others just implement a simple gossip style protocol

to propagate data.

This paper motivates a research proposal for a dis-

tributed application-level monitoring infrastructure.

First it gives an overview of concepts used in related

work and describes the different systems themselves.

1 Introduction

P2P systems have had a steady increase in popularity

over the last few years amongst both researchers and

internet users alike. While the latter group is only

interested in obtaining a particular file, the former

is more interested in P2Ps scientific beauty and its

ability to solve old problems more efficiently.

These problems include Service Discovery, scalable

Multi- and Any-Cast (CAST), group management
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(GROUP), routing, Distributed Object Locating and

Routing (DOLR), distributing data (in acDBMS for

example), distributing load (search/query execution

in these Database Management System (DBMS)),

managing a large collection of distributed sensors

(data sources) known as SensorNets, and monitor-

ing of any of these systems. While a lot of effort is

being put into satisfying the end-user clientelè, by

programming good file-sharing tools, a large commu-

nity of researchers has lately been forming around

solving systems problems with the help of P2P. The

Java based JXTA community [20] is one such exam-

ple, the IRIS Group [40] is another.

We think that on the one hand there are a handful

of P2P tools that might be useful for application-level

monitoring, while on the other hand we are not aware

of any good surveys about them. With this paper

we strive to fill that gap and give a short but con-

scise overview of P2P query executing, aggregating

and monitoring systems before motivating our own

system. We selected systems that fulfill three basic

properties. They need to be designed to be

• scalable,

• flexible,

• and robust.

Moreover, we mention systems that fulfill these ba-

sic properties but seem to be in an early planning

stage in the related Work Section. These properties

ensure applicability to a broad range of management

problems and tasks.

These systems can roughly be classified into three

categories

1. Distributed Databases (subsection 3.1),

2. Aggregation Overlays (subsection 3.2),

3. and Sensor Networks (subsection 3.3).

Figure 1: A rough classification of the systems in this
survey into the three categories

Distributed Databases are those systems that are

closest to traditional DBMS in that they are designed

to allow you to execute arbitrary queries over dis-

tributed data.
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Aggregation Overlays make some data that is avail-

able on individual nodes available to other nodes

while reducing detail (and thus size) with growing

distance. This is achieved by some configurable ag-

gregation operator. They are close to distributed

DBMS in that most of them also allow to execute op-

erators that do not aggregate but rather return an

exact result.

Sensor Networks try to accomplish a slightly dif-

ferent goal. Sensor Networks try to simulate a

Database-like interface for a possibly large number

of distributed sensors. Consequently, SensorNets ex-

hibit a large overlap with both Distributed DBMS and

Aggregation Overlays. In contrast to the former two

categories, however, the focus of most SensorNets is

shifted towards resource constrained sensors.

Due to this big area of intersection between these

3 classes, it is sometimes very hard to decide where

to place a particular system.

After we finished this report we found ourselves with

a feeling that there seems to be something missing,

especially in the light of using PlanetLab [33, 35].

Thus the last section will illuminate motivations for

our own solution. The reader is referred to [26] for

the complete proposal.

The rest of this paper is organized as follows: Sec-

tion 2 will introduce the reader to some key concepts,

Section 3 explains each system in turn, Section 4 sum-

marizes some related work, Section 5 concludes, and

Section 6 illuminates our project.

2 Concepts

All these Systems have to set up some kind of over-

lay network above the bare P2P transport network to

provide routing.

Consequently, we will call this abstraction the

Routing Overlay (RO). In most cases this service is

provided by a DHT [21, 28, 42, 44, 45, 48, 58]. Al-

most all of todays DHTs, sometimes referred to as

Prefix-based Overlays or Structured Overlays, build

on Plaxton et al’s (commonly called PRR by people

in the field) [37] groundbreaking paper about routing

in unstructured networks. Their work left room for

aggregation in its trees, whereas most modern imple-

mentations disregard this feature.

However some systems function perfectly well

without a RO overlay. Astrolabe [51] for example

does not use a DHT at all, and in fact, has no need

for routing. It’s epidemic gossiping protocol achieves

eventual consistency by gossiping updates around,

thus it has no need for routing, since every node is

assumed to know everything about the state of the

system.
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Query dissemination ’down’ and data aggrega-

tion ’back up’ is done through the Aggregation

Overlay (AO). This overlay tends to resemble its

most closely related natural object, in the form of a

tree. Though every system uses some kind of tree,

the building algorithms as well as the actual form of

these are vastly different. Astrolabe, again, does not

need to explicitly build a tree on run-time, because

it relies on the user specifying a name hirarchy on

setup-time. Each name prefix is called a zone and all

those nodes whose DNS name start with the same

string are members of that specific zone. It builds a

tree out of the hierarchy, albeit one that might have

a very high branching factor (number of sub-zones

to each zone and number of nodes in each leaf-zone).

A number of systems make use of the inherent

structure of Prefix-based Overlays (DHTs) for build-

ing aggregation trees. The idea is as described below.

Any DHT routing protocol populates a flat identifier

space by assigning long bit-strings to each host. In-

complete bit-strings, that is strings with some miss-

ing or ignored bits at the end, are called prefix bits.

Now imagine a tree in which each child’s prefix is

one bit longer than its parent’s: A global binary tree.

This assumes that the DHT fixes exactly one bit per

hop. DHTs that fix more than one bit per hop will

simply result in a higher branching factor. Since ac-

tual nodes will always have complete bit-strings, all

internal nodes that are addressable by a prefix are

’virtual’ in the sense of the tree. The physical nodes

are the leafs of the tree and can be reached from the

root (’empty prefix’) by a unique path. We will call

this structure Key-Based Tree (KBT), henceforth, be-

cause it maps the tree onto the key-space.
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Figure 2: Sample KBT with five nodes using a 3-bit
wide ID-space and a static approach in which the left
child assumes the parent role (’Left-Tree’

Routing towards a specific ID in Structured Over-

lays works by adding at least one matching prefix bit
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each hop until the node with the longest matching

prefix is reached. The characteristic of DHTs that a

message from every node towards a specific ID takes

a slightly different path leads to the realization that

the union of all these paths represents another tree

- a different one for each ID. These trees are like in-

verted KBTs: The exact node with the longest match-

ing prefix is the root, whereas in a KBT every node

could be the root depending on its tie-breaking (see

below) algorithm, since every ID matches the empty

prefix. Since this data-structure depends on nodes

fingertables we refer to this as a FingerTable-based

Tree (FTT).

KBTs are binary if the underlying DHT fixes one bit

per hop and every node will be at the same depth i,

with i = number of bits in ID. But generally they

are not balanced.

FFT!s (FFT!s) on the other hand will never be

balanced, and moreover not all nodes will be at the

same level. Moreover, they do not have to be binary.

These properties make their usefulness as aggregation

trees questionable. One way to fix this is described in

the Proposal Section (section 6) as a possible data-

structure for our project and in more detail in a tech-

nical report [25].

Some advantages of FFT!s over a KBT are:

• There may be as many FFT!s as needed, by hav-
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Figure 3: Graphical representation of all paths from
6 nodes towards Key(111) for a 3-bit wide ID-space
(the matching prefix is highlighted, and the corrected
bit noted along the path), and the resulting FTT

ing the root depend on the hash of some char-

acteristic of the query, resulting in better load-

balancing.

• Trees in FFT!s can be rooted at any node.

• Trees in FFT!s are kept in soft-state, thus there

is no need to worry about repairing them.

The implementation of a KBT will decide its tie-

breaking behaviour, meaning which child will be re-

sponsible for its ’virtual’ parent. There are two ba-
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sic approaches: static or dynamic. Choices of dy-

namic include: based on age, reliability, load, band-

with or based on a changeable query (cf. subsub-

section 3.2.1). Static algorithms can only choose the

one that is closest to a a deterministic point of the

region (eg. left, right, center). A static choice has

the advantage of predictability provided you have a

rough estimate about the number of nodes. This

predictability allows you to make informed guesses

about the location of internal nodes of your KBT in

your ID space. To our knowledge only SOMO (cf.

subsubsection 3.2.4) has this property. For FFT!s

this is slighlty harder to achieve, since this location

is going to be different for each key, but still possible

(see [25]).

According to our definitions of Overlays

KBTs/FFT!s are RO and AO at the same time,

i.e. ”hybrid”.

Summarizing, Monitoring Systems have the choice

of maintaining only one global KBT, building a

FTT for each query or query-type, or building their

own aggregation tree that is not relying on a DHT.

Furthermore, they have to decide how to handle

aggregation using these trees, once they are built.

Data has to be passed up somehow for aggregation.

The obvious choice of re-evaluating aggregates on

every update of any underlying value might not be

the best choice, however. If rarely read values are

updated frequently a lot of unused traffic results.

Thus a solution could be to only re-evaluate on a

read. On the other hand, if frequently requested

variables are seldomly written, this strategy leads

to a lot of overhead again. Therefore some systems,

such as SDIMS (cf. subsubsection 3.2.3), adopt

the concept of letting the aggregate requester chose

these values. Known as up-k and down-j parameters,

these values specify how far ’up’ the tree an update

should trigger a re-evaluation, and after this, how

far ’down’ the tree a result will be passed. Most

System implicitly use all for these values, this is

why SDIMS’ k and j parameters default to ’all’.

3 Related Systems

3.1 Distributed Databases

Distributed-DBMSs route results from systems that

generate query responses towards systems that ag-

gregate them. They are designed to closely approx-

imate the semantics of traditional DBMS. The two

most closely related systems are summarized in this

section.
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3.1.1 PIER

The P2P Information Exchange & Retrieval System

[18, 19, 34], which is being developed by the DBMS

team at UC Berkeley, is a project meant to be a fully-

fledged, distributed query execution engine. It is a

DHT-based, flat, relational DB. It has mostly been

discontinued in favor of PHI [8].

Like commercial DBMS, it utilizes traditional boxes-

and-arrows (often called opgraph) execution graphs.

As its RO Pier uses a DHT. It has successfully been

implemented on CAN [42], Bamboo [44] and Chord

[48]. P2P Information Exchange & Retrieval (PIER)

uses a single-threaded architecture much like SEDA

[54], is programmed in Java and is currently deployed

on PlanetLab [33, 35] (now called PHI). The basic

underlying transport protocol PIER utilizes is Uni-

versal Datagram Protocol (UDP), although enriched

by the UdpCC Library [44], which provides acknowl-

edgments and Transmission Control Protocol (TCP)-

style congestion handling.

A query explicitly specifies an opgraph using their

language called UFL. Structured Query Language

(SQL) statements that are entered get rendered into

an opgraph by the system. This graph is then dis-

seminated to all participating nodes using an index

(see below) and is executed by them. For execution,

PIER uses an lscan operator, which is able to scan

the whole local portion of the DHT for values that

match the query. To find nodes that might have data

for a query, PIER supports three indices that can be

used just like indices of any DBMS: true-predicate,

equality-predicate and range-predicate. These predi-

cates represent the AO.

Upon joining the network every PIER node sends

a packet containing its own ID towards a well-known

root that is a-priori hardcoded into PIER. This serve

the purpose of a rendezvous point for building the

tree. The next hop that sees this packet drops it and

notes this link as a child path. These paths form a

parent-child relationship among all the nodes, a tree.

This is the true-predicate; it reaches every node.

The DHT key used to represent data stored within

PIER is the hash of a composite of the table name

and some of the relational attributes and carries a

random suffix to separate itself from other tuples in

the same table. Thus, every tuple can be found by

hashing these distinguishing attributes. This is the

equality-predicate.

The range-predicate is set by overlaying a Prefix

Hash Tree (PHT [43]) on the DHT. It is still not fully

supported by PIER.

Once result tuples for a query are produced, they

are sent towards the requester by means of the DHT.

The query is executed until a specifiable timeout in
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the query fires.

For aggregation queries, PIER uses one FTT per

query. Every intermediate hop receives an upcall

upon routing and gets a chance of changing the com-

plete message; including its source, sink, and next

hop.

PIER uses the Java type system for representing

data; its tuples are serialized Java objects. They

can be nested, composite or more complex objects.

PIER does not care about how they are actually rep-

resented, other than through their accessor methods.

PIER is unique in its aggressive uses of the under-

lying DHT, such as for hashing tuples by their keys,

finding joining nodes (PHT and indices), hierarchi-

cal aggregation and execution of traditional hash-

ing joins. Although [17] suggests that PIER’s perfor-

mance is not as expected, it remains an interesting

system for querying arbitrary data that is spread-out

over numerous nodes.

3.1.2 Sophia

Sophia [53] is a Network Information plane, devel-

oped at Princeton and Bekeley. Like other P2P sys-

tems, Sophia was evaluated on PlanetLab. A network

information plane is a “conceptual” plane that cuts

horizontally through the whole network and thus is

able to expose all system-state. Consequently, every

system described here is an information plane.

While the sophia project does not explicitly ad-

dress the dynamic structuring of an aggregation op-

eration, its function as a distributed query and aggre-

gation engine is relevant to PlanetenWachHundNetz

(PWHN). Sophia does not qualify as a P2P system,

from what can be told from [53]. I decided to include

it here because it is a system that takes a completely

different approach to expressing queries.

Sophia supports three functions: aggregation, dis-

tributed queries and triggers. Queries and trig-

gers can be formulated using a high-level, Prolog-

based logic language or using the (underlying) low-

level, functor-based instruction set. The authors

chose a subset of the Prolog-language because both a

domain-tailored description and a declarative query

language incorporate a-priori assumptions about the

system.

Every statement has an implicit part that evalu-

ates to the current NodeID and Time. Thanks to

this, Sophia has the ability to formulate statements

involving time, as well as caching results. Queries can

explicitly state on which nodes to evaluate particular

computations. Sophia’s query unification engine will

expand a set of high-level rules into lower-level ex-

plicit evaluations that carry explicit locations. This

also gives rise to the ability to rewrite those rules on

the fly, thereby allowing in-query re-optimization. In
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addition, Sophia’s implementation of Prolog has the

ability to evaluate and return partial results from “in-

complete” statements, i.e. expressions in which some

subexpressions cannot be evaluated. An example of

this being due to non-reachable nodes.

The run-time core is extendable through load-

able modules that contain additional rules. Security

within Sophia is enforced through capabilities. Capa-

bilities are just aliases for rules that start with the

string cap and end with a random 128-bit string. To

be able to use a particular rule, a user must know its

alias because the run-time system makes sure its orig-

inal name cannot be used. The system also prevents

enumerating all defined aliases. To avoid caching

aliases in place of the real results, caching is imple-

mented in a way that all capability-references are re-

solved before storing an entry.

The current implementation on PlanetLab runs a

minimal local core on each node, with most of the

functionality implemented in loadable modules. All

terms are stored in a single, flat logic-term DB. Sen-

sors are accessed through interfaces that insert “vir-

tual” ground terms into the terms-DB, thereby mak-

ing sensor-readings unifiable (processable by queries).

3.1.3 Summary

D-DBMS are a good approach to expressing arbitrary

queries on a distributed set of nodes. Commonly they

focus on keeping as much of the ACID semantics as

possible intact, while still allowing the execution of

distributed queries on a network of nodes. For all

intents and purposes of a monitoring system, keeping

the ACID semantics is not as important as having

greater expressiveness for queries. This is not given

in either PIER or Sophia because the former uses SQL

whereas the latter uses Prolog to express queries.

3.2 Aggregation Overlays

Aggregation overlays are designed to provide a gen-

eral framework for collection, transmission and ag-

gregation of arbitrary data from distributed nodes.

Generally, they are constructed to allow data that

belongs to a specific group, like the group of rela-

tional data. This section introduces four aggregation

systems.

3.2.1 Astrolabe

Astrolabe [4, 51] is a zoned, hierarchical, relational

DB. It does not use an explicit RO as in a DHT. In-

stead, it relies on the administrator setting up rea-

sonably structured zones according to the topology

of the network by assigning proper Domain Name

System (DNS) names to nodes. For example, all com-

puters within University of Texas at El Pasos (UTEPs)

Computer Science (C.S.) department might start with
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“utep.cs.” Following the protocol they will all be

within the zone named “utep.cs,” providing locality

advantages over a KBT/FTT approach. Bootstrap-

ping works by joining a hardcoded multicast group

on the Local Area Network (LAN). In case that does

not work Astrolabe will send out periodic broadcast

messages to the LAN, for other nodes to pick up.

Locally available (read: published) data is held in

Management Information Bases (MIBs), a name that

is borrowed from the Simple Network Management

Protocol (SNMP) [7]. The protocol keeps track of all

the nodes in its own zone and of a set of contact

nodes in other zones which are elected by those zones.

Astrolabe uses the gossip protocol introduced in the

introduction.

Each node periodically runs the gossip protocol.

It will first update all its MIBs and then select some

nodes of its own zone at random. If it is a repre-

sentative for a zone, it will also gossip on behalf of

that zone. To that end it selects another zone to

gossip with and picks a random node from its con-

tact list. If the node it picked is in its own zone it

will tell that node what it knows about MIBs in their

own zone. If the node is in another zone it will con-

verse about MIBs in all their common ancestor zones.

These messages do not contain the data; they only

contain timestamps to give the receiver a chance to

check their own MIBs for stale data. They will send

a message back asking for the actual data.

Aggregation functions, introduced in the form of

signed certificates, are used to compute aggregates

for non-leaf zones. They can be introduced at run-

time and are gossiped around just like everything else.

Certificates can also be sent that change the behav-

ior of the system. After updating any data, including

mere local updates, Astrolabe will recompute any ag-

gregates for which the data has changed.

Summarizing, this means that Astrolabe does not

use routing at all. All the information one might want

to query about has to be “gossiped” to the port-of-

entry node. If one wants to ask a question, one has

to install the query and wait until its certificate has

disseminated down to all nodes (into all zones) and

the answer has gossiped back up to him or her. This

makes its Gossip Protocol the AO. Thus, Astrolabe

does not have an RO according to my definition.

Astrolabe incorporates security by allowing each

zone to have its own set of policies. They are in-

troduced by certificates that are issued and signed

by an administrator for that zone. For that purpose

each zone contains a Certification Authority, which

every node in that zone has to know and trust. Pub-

licKey cryptography, symmetric cryptography, and

no cryptography at all can all be used in a zone. As-
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trolabe at present only concerns itself with integrity

and read/write Access Control Lists (ACLs), not with

secrecy.

Astrolabe is an interesting project which has some

compelling features, like security, but has been su-

perceeded by Willow (cf. subsubsection 3.2.2).

3.2.2 Willow

Willow [52] is a DHT-based, aggregating overlay-tree

(a KBT). It uses its own Kademlia-like [28] DHT im-

plementation. It seems to be an implicit successor to

Astrolabe since it, according to the authors, inherits a

lot of functionality from Astrolabe, at the same time

choosing a more well-treaded path. Willow uses TCP

and is currently implemented in roughly 2.3k lines of

Java code (excluding SQL code).

Willow defines its domains, much like the zones in

Astrolabe, to be comprised of all the nodes that share

the same prefix, i.e. that are in the same subtree of

the KBT. Following this definition, every node owns

its own domain, while its parent domain consists of

a node and its sibling.

Like the zones in Astrolabe, every domain elects

both a candidate and a contact for itself. The con-

tact is the younger of the two child nodes (or child

contacts), whereas the candidate is the older. Thus

Willow uses a dynamic election scheme based on age.

The contact of a domain is responsible for letting its

sibling know about any updates which will then dis-

seminate them down its own subtree.

Willow comes equipped with a tree-healing mecha-

nism but did not inherit Astrolabe’s security features.

3.2.3 SDIMS

The Scalable Distributed Information Management

System [55, 56] is a system based on FTTs, which is

developed at the University of Texas at Austin. It is

implemented in Java using the FreePastry framework

[45] and has been evaluated on a number of depart-

mental machines as well as on 69 PlanetLab nodes.

The authors state that they designed it to be a

basic building block for a broad range of large-scale,

distributed applications. Thus, Scalable Distributed

Information Management System (SDIMS) is meant

to provide a “distributed operating system backbone”

to aid the deployment of new services in a network.

Flexibility in the context of SDIMS means that it does

not assume anything about properties of your data a-

priori, for example the update-rate of variables. In-

stead, up-k and down-j parameters are given while

registering a query.

SDIMS respects administrative domains for secu-

rity purposes by using what is called an Autonomous

DHT (ADHT). It does so by introducing superflu-

ous internal nodes into the FTT whenever the isola-

tion of a domain would otherwise have been violated.
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Running a query is driven by three functions; install,

update and probe.

• Install registers an aggregate function with the

system. It has three optional attributes: Up,

down, and domain.

• Update creates a new tuple.

• Probe delivers the value of an attribute to the

application. It takes four optional arguments:

Mode ∈ [continuous, one − shot], level, up, and

down.

SDIMS does not, however, split the aggregation

function further into three smaller operators, like in

Tiny AGgregation service (TAG).

The current prototype neither implements any se-

curity features nor restricts resource usage of a query.

Future implementations are planned to incorporate

both.

3.2.4 SOMO

The Self-Organized Metadata Overlay [57], which is

developed in China, is a system-metadata and com-

munication infrastructure to be used as a health mon-

itor. A health monitor can be used to monitor the

“health” of a distributed system, meaning it provides

information about the system’s state (good or bad).

It relies on a so-called Data Overlay that allows

overlaying arbitrary data on top of any DHT. It fa-

cilitates hosting of any kind of data structure on a

DHT by simply translating the native pointers into

DHT keys (which are basically just pointers to other

nodes). To work on a data overlay a data structure

has to be translated in the following way:

1. Each object must have a key, and

2. for any pointer A store the corresponding key

instead.

Self-Organized Metadata Overlay (SOMO) also

stores a last known host along with the key to serve

as a routing shortcut. This data overlay on a fairly

static P2P network has the ability to give applications

the illusion of almost infinite storage space.

SOMO builds this structure, which is very similar

to a KBT, on top of an already existing DHT in the

following way. The ID space is divided into N equal

parts, with N = Num(Nodes). A SOMO node is

responsible for one of these parts. From this range

a key will be derived in a deterministic way. The

default algorithm in SOMO is to take its center. The

SOMO node will then be hosted by the DHT node

which owns this key.

The SOMO KBT starts out with only one DHT node

which will host a SOMO node responsible for the

whole ID-space. As soon as a function periodically

executed by each SOMO node detects that the ID
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range, for which its hosting DHT node is responsi-

ble, is smaller than the range it feels responsible for,

it will assume that new DHT nodes have joined and

spawn new SOMO nodes for them. Thus the tree will

grow. The root node will remain responsible for the

whole space on level 0 but in lower levels there might

be other DHT nodes responsible for certain parts,

depending on their location in the ID-space. This

scheme does almost, but not exactly, resemble my

description of a tie-breaking scheme, with a static al-

gorithm set to the center of the range.

This approach has the disadvantage that it might

not react to membership changes as fast as a normal

KBT algorithm would.

To gather system metadata each SOMO node will

periodically collect reports from its children. If it is

a leaf it will simply request the data from its hosting

DHT node. Once the aggregate arrives at the root, it

is trickled down towards the leafs again.

SOMO can be used for a variety of purposes. It is

interesting in its novel approach of layering another

abstraction on top of a DHT, which allows it to be

somewhat independent of the DHT and have a much

simpler design.

3.2.5 Summary

Aggregation overlays are the closest ancestors to

what I set out to do. Astrolabe is more a D-DBMS

than an aggregation overlay but allows the easy in-

stallation of aggregation functions which is why I put

it in this section. It uses a gossip-style protocol which

is the oldest and most ineffective approach by modern

standards.

The available information about Willow is too

sparse to be able to even tell if it could be used as

a monitoring system, and even less so, how. SDIMS

seems to be suitable for this purpose, but still as-

sumes certain attributes about the data that an ap-

plication needs to aggregate, for example that it has

a primitive type and can be aggregated by a function

from a small set of prefix functions. SOMO is a much

more broader toolkit that can be used to store ba-

sically anything in a DHT that can be expressed by

reference-types.

3.3 Sensor Networks

Sensor Networks are designed to provide a

“surveilance network” built out of commonly

small, unmanaged, radio-connected nodes. The

nodes have to be able to adapt to an unknown

(possibly hostile) territory, organize themselves in

a fashion that allows routing and answer queries

about or monitor the state of their environment

and trigger an action on the occurrence of a specific

condition. This section introduces the two most
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complete research projects in this field.

3.3.1 IRISNet

The Internet-scale Resource-Intensive Sensor

Network Services [30] project at Intel Research is

one of the many projects under the hood of IRIS

[40]. It is closer to a Sensor Network than the other

systems in this survey, which are more comparable

to traditional monitoring systems. Prior research of

Sensor Networks [5, 22, 27, 39] has primarily focused

on the severe resource constraints such systems tra-

ditionally faced. IrisNet broadens the definition to

include richer sensors, such as internet-connected,

powerful, commodity PCs. It provides software in-

frastructure for deploying and maintaining very large

(possibly-planetary-scale) Sensor Networks adhering

to this new definition.

IrisNet is a 2-tier architecture. It decouples the

agents that access the actual sensor from a database

for those readings. Agents that export a generic in-

terface for accessing sensors are called Sensing Agents

(SAs). Nodes that make up the distributed database

that stores the service specific data are called Orga-

nizing Agents (OAs). Each OA only participates in

a single sensing service. However, a single machine

can run multiple OAs. IrisNet’s authors chose eXten-

sible Markup Language (XML) for representing data

because it has the advantage of self-describing tags,

thus carrying the necessary metadata around in every

tuple. Queries are represented in XQuery because it

is the most widely adopted query language for XML

data.

Some definitions of P2P demand that a system be

called P2P only if it has an address-scheme indepen-

dent from DNS. According to this definition, IrisNet

(as well as Astrolabe) is not P2P since its routing

scheme relies on DNS. It names its nodes according

to their physical location in terms of the real world.

Each OA registers the names of all the SAs that it is

responsible for with DNS. Thus it achieves a certain

level of flexibility because node ownership remapping

is easy, but, on the other hand, is dependent on a

working DNS subsystem.

Routing queries to the least common ancestor OA

of the queried data is not hard because that name is

findable by just looking in the XML hierarchy. The

OA that owns this part of the name space can then

be found by a simple DNS lookup. If that OA can-

not answer all parts of the query, it might send sub-

queries to other OAs lower in the XML hierarchy. For

parts they can answer, OAs also use partially match-

ing cached results. If this is unwanted, a query can

specify freshness constraints.

IrisNet lets services upload and execute pieces of

code that filter sensor readings dynamically, directly
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to the SAs. This is called a senselet. Processed sensor

readings are sent by the SA to any nearby OA, which

will route it to the OA that actually owns this SA. By

decoupling the SA from the OA, “mobile” sensors are

made possible.

IrisNet’s contributions lie more in the field of Sen-

sor Networks, but there is an application of IrisNet

to System Monitoring. IrisLog runs an SA on each

PlanetLab node which uses Ganglia Sensors to col-

lect 30 different performance metrics. Users can issue

queries for particular metrics or fully-fledged XPath

queries using a web-based form. The IrisLog XML

schema describes which metrics should be gathered

and to which OA they have to be sent. This is why

IrisNet is included here.

3.3.2 TAG

The Tiny AGgregation service for ad-hoc sensor net-

works [27], developed at UC Berkeley, is an aggre-

gation system for data from small wireless sensors.

It draws a lot of inspiration from Cougar [5] which

argues towards sensor database systems. These so

called motes, also developed at UC Berkeley, come

equipped with a radio, a CPU, some memory, a small

battery pack and a set of sensors. Their Operating

System (OS), called TinyOS, provides a set of prim-

itives to essentially build an ad-hoc P2P network for

locating sensors and routing data. The mote wire-

less networks have some very specific properties that

distinguish it from other systems in this survey. A

radio network is a broadcast medium, meaning that

every mote in range sees a message. Consequently

messages destined for nodes not in range have to be

relayed.

TAG builds a routing tree through flooding: The

root node wishing to build an aggregation tree broad-

casts a message with the level set to 0. Each node

that has not seen this message before notes the sender

ID as its parent, changes the level to 1 and re-

broadcasts it. These trees are kept in soft-state, thus

the root has to re-broadcast the building message ev-

ery so often if it wishes to keep the tree alive.

The sensor DB in TAG can be thought of as a sin-

gle, relational, append-only DB like the one used by

Cougar [5]. Queries are formulated using SQL, en-

riched by one more keyword, EPOCH. The parameter

DURATION to the keyword EPOCH, the only one that

is supported so far, specifies the time (in seconds) a

mote has to wait before aggregating and transmitting

each successive sample.

Stream semantics differ from normal relational se-

mantics in the fact that they produce a stream of

values instead of a single aggregate. A tuple in this

semantic consists of a < group id, val > pair per

group. Each group is timestamped and all the values
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used to compute the aggregate satisfy timestamp <

time of sample < timestamp + DURATION .

Aggregation in TAG works similarly to the other

P2P systems that use trees in this survey: The query

is disseminated down the tree in a distribution phase

and then aggregated up the tree in a collection phase.

The query has a specific timeout in the form of the

EPOCH keyword. Consequently, the root has to pro-

duce an answer before the next epoch begins. It tells

its children when it expects an answer and powers

down for the remaining time. The direct children will

then subdivide this time range and tell their children

to answer before the end of their timeout, respec-

tively.

For computing the aggregates internally that are

specified externally using SQL, TAG makes use of tech-

niques that are well-known from shared-nothing par-

allel query processing environments [47]. These en-

vironments also require the coordination of a large

number of independent nodes to calculate aggregates.

They work by decomposing an aggregate function

into three smaller ones:

• an initializer i,

• a merging function f , and

• an evaluator e.

i run on each node will emit a multi-valued (i.e.

a vector) partial-state record 〈x〉. f is applied to

two distinct partial-state records and has the general

structure 〈z〉 = f(〈x〉, 〈y〉), where 〈x〉 and 〈y〉 are two

partial state records from different nodes. Finally, e

is run on the last partial-state record output from f

if it needs to be post-processed to produce an answer.

Another unique contribution of this paper is the

classification of aggregate functions by four dimen-

sions:

1. Duplicate sensitive vs. insensitive Describes a

functions’ robustness against duplicate readings

from one sensor.

2. Exemplary vs. summary Exemplary functions

return some representative subset of all readings,

whereas summary functions perform some oper-

ation on all values.

3. Monotonic - Describes an aggregate function

whose result is either smaller or bigger than both

its inputs.

4. State - Assesses how much data an intermedi-

ate tuple has to contain in order to be evaluated

correctly.

What makes this project interesting is not its de-

scription of TAG, because I think that its tree building

and routing primitives are inferior to others presented

in this survey, but its groundwork that is important
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in many ways to aggregation systems. The addition

of an EPOCH concept to SQL is one such example,

while the classification of aggregation functions along

four axis is another.

3.3.3 Summary

Whereas both aggregation overlays and distributed

DBMS can be used alongside an application that is to

be monitored, sensor networks are designed to run by

themselves and commonly focus on heavily resource-

restricted hardware platforms. While IrisNet is an

exception to this, it has no extension mechanism and

can only be used to collect Ganglia data through Iris-

Log. The TAG paper is valuable because of its con-

tribution but otherwise not usable as a monitoring

framework.

4 Related Work

The Distributed Approximative System Information

Service (DASIS) [2] is a system developed at the ETH

Zürich, which collects aproximate meta-state about

a P2P system. This can be used to improve join and

leave algorithms, for example. Dasis is a KBT and

can run over a variety of P2P systems. It has been

implemented on top of Kademlia [28].

Cone [3] is intended for distributed resource dis-

covery by allowing clients to search for a resource

that satisfies a particular property (max in this case).

They argue that this functionality can be provided

by a DHT that has been ’augmented’ to permit heap

functionality. Cone builds a standard KBT for this.

Sensornets (of which [5, 22, 27, 39] are a good

cross-cut) are similar to the work presented in this

survey, because of their need to present a generic,

Database-style interface to distributed data sources.

As such they have largely concentrated on a very re-

stricted abstraction of a PC, exemplary called mote

[27] here, which has limited resources (slow CPU,

small memory, limited bandwith). Due to this con-

traints early contributions have mostly been centered

on tiny Operating Systems (TinyOS ) and low-power

network controls. Other works have explored using

query techniques for streaming data and using prox-

ies to coordinate queries to save sensors’ limited re-

sources. TAG (cf. subsubsection 3.3.2), is actually

a SensorNet, but has some similarities to distributed

monitoring systems. IrisNet (cf. subsubsection 3.3.1)

is classified by its authors as a SensorNet, albeit with

more powerful Sensors.

Last but not least, distributed monitoring systems

owe a great share to prior work in Distributed

DBMS, for example Mariposa [49] and R* [24], and

Parallel DBMS, like Volcano [16] and Gamma [13].

Distributed DBMS, however, have mostly been de-
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signed to make distribution transparent to users and

still guarantee ACID semantics. Parallel DBMS have

pioneered the use of hashing techniques for executing

operators in parallel.

5 Summary

Five out of eight Systems presented in this paper

are currently deployed on PlanetLab . PlanetLab

[33, 35] is consortium of mostly educational institu-

tions around the globe donating machines to a com-

mon goal. This goal is to be able to test widely dis-

tributed services in their natural habitat, i.e. in a

network that is comprised of nodes scattered around

the world, connected through the Internet. Naturally,

the need to monitor these services arises. In addition

to the systems presented here there are the following

services on PlanetLab , designed to aid with monitor-

ing of nodes and deploying of new experiments: Man-

agement Overlay Networks (MON), Ganglia Mon-

itoring System, CoMon (part of CoDeeN), CoTop

(also part of CoDeeN), SWORD, Plush, DSMT which

uses PsEPR [6, 41], and last but certainly not least,

The PlanetLab Application Manager.

MON [23, 29] builds on-demand trees for dis-

tributing software updates and run commands. Com-

mands include returning information about the over-

lay itself, some statistics returned by the CoTop

server and a filter operator. The Ganglia Mon-

itoring System [15, 46] builds on UDP multicast

within a cluster, and at a higher level on building

aggregation trees. Ganglia is a much more general

tool and thus not tailored to PlanetLab ’s slices and

nodes. It uses XML. CoMon [10, 32], part of Prince-

ton’s CoDeeN project [9], collects per-slice and per-

node stats and stores them on a central server, using

HTTP for routing and HTML tables for data. Co-

Top [11], looks like a normal ’top’ but diplays slice

information instead. SWORD [31, 50] is meant for

distributed resource discovery, for example finding a

node with the lowest load. It interfaces with the

ganglia, cotop, and trumpet sensors on each node

and uses XML for queries, but only MIN/MAX are

implemented as of now. Plush [1, 38] is meant to

provide an extensible execution management system

for large scale distributed systems, and was designed

with PlanetLab in mind. It will take experiment de-

scriptions in XML and contact remote nodes, upload

and run the software and then cleanup. DSMT [14]

is yet another distributed software deployment tool

on PlanetLab , which delivers some statistics about

a node on which your software is running. PlAM

[36] is another deployment tool, that also helps with

controlling and monitoring the health of an experi-

ment.
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Out of these eight only three could be extended

to monitor, send and collect a process’ output for

aggregation. Plush is modularized and can be ex-

tended to collect a process’ output, aggregate and

send it to a client. MON currently only allows the

execution of queries regarding node’s resources, but

could, according to the authors, easily be extended to

query arbitrary sensors. Ganglia allows applications

to publish its metrics within ganglia by sending them

to its multicast port. Those metrics are then gath-

ered and aggregated by ganglia. The types of those

metrics must be explicitly defined by the application

in order for ganglia to be able to know how to ag-

gregate them. This restricts applications to a certain

set of base types.

Out of the systems presented in this paper that

are deployed on PlanetLab , only Pier and SDIMS

(and maybe Sophia) seem to be suited to do applica-

tion level monitoring, albeit they are not making it

easy. Both Pier and SDIMS were not designed with

users of PlanetLab in mind. Pier was designed to be

as close to a local relational query engine as a dis-

tributed one could be by giving up some of the ACID

(atomicity, consistency, independence and durability)

constraints. Its main purpose is therefore not aggre-

gation, nor application-level monitoring. SDIMS is

meant to be an aggregating overlay for system meta-

data. As such it can be used for application-level

monitoring by explicitly inserting a process’ logs into

the system and setting up an aggregation function

to reduce the amount of data. None of these choices

currently concern themselves with security.

6 Proposal

any KBR

build()
up()
down()

root
PP-SOAT-I

build()

Init-opG
Upd-opG
eval-opG

PWHN

route()
forward()
deliver()

common API

DHT,
DOLR,
CAST

Figure 4: High-level Architecture overview

Researchers use PlanetLab today to set up wide-

area distributed experiments, possibly involving hun-

dreds of distinct systems. The software that runs on

each node typically needs to be monitored to gather

data and track bugs. Currently there is no easy,

agreed-upon method of doing that. A researcher can
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set up her own system within the application be-

ing monitored, but this could potentially alter the

readings. Or she could use one of the systems de-

scribed above, albeit as we already pointed out, this

needs some set-up and customization time. Thus, a

researcher has a hard time deciding how to do appli-

cation level monitoring.

We propose to build a software that fills this gap.

Implement a software which is meant to facilitate

application-level monitoring on PlanetLab. A tool

that provides an easy-to-use, always running aggre-

gation abstraction, that researchers could use with-

out the need to do complicated and time consuming

setup.

We plan to build a system, called

PlanetenWachHundNetz (PWHN — pronounced

’pawn’), which is German that loosely translates to

’PlanetaryWatchDogNet’, that runs a service on

every PlanetLab node and thus does not need to be

installed. Researchers would set up an aggregation

tree by talking to the local instance of the service

and giving it some parameters as well as a security

certificate. The interface that this aggregation tree

needs to build upon is abstract enough and does

not assume anything about the underlying routing

strategy so that it can be build on almost anything,

including DHTs, Astrolabe’s gossiping Algorithm,

publish/subscribe and group management protocols.

We plan to build a reference module that builds a

FTT on the FreePastry Framework which exports

the common API for structured Overlays [12]. This

has the important advantage that as more and DHTs

support this API the choices of Overlays to run

PWHN on increase.

As mentioned in the Concepts Section (section 2)

a FTT is mostlikely not going to be balanced nor bi-

nary. A Perfect FFT, meaning one with the exact

number of possible nodes, however, could be binary

and balanced. A DHTs routing ability depends on the

flexibility to choose any node with a given match-

ing prefix while routing. Thus the number of can-

didates to route to is inversely proportional to the

size of the prefix, and vice versa is directly propor-

tional to the suffix. Because of this growing number

of choices for the next hop (which also depend on a

nodes’ fingertable), even a Perfect FTT is most likely

not unique, and thus neither binary nor balanced, for

any given DHT Key. One possible solution is to re-

strict a nodes’ choice for the next hop to exactly one

by also fixing the suffix. For example in a ’normal’

DHT a node with ID = 000 that wants to route a

message to Key(111) has four choices for the next

hop: all those that match 1XX. Fixing the pre- and

suffix to the current nodes’ ones, while still flipping
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the next bit (i.e. adding one more prefix bit) essen-

tially reduces the number of routing candidates to

one. Continuing our example, node(000) will have

to route the message to node(100), because that cor-

rects the next bit of the (currently emtpy) prefix and

keeps the same post-fix. This ensures that the result-

ing tree will be both binary and balanced for a fully

populated ID-space. More likely it will not be fully

populated. Rather than (unsuccessfully) trying to

route to a large number of non-existing nodes, an ap-

plication building such a tree should have access to a

DHTs fingertable and Key-Based Routing layer (KBR)

Layer. However, just adding a single function to the

DHTs interface allows an application to build a PP-

FFT! (PP-FFT!) on it. Since the application needs

to find nodes without actually storing data at them,

which would be the (unwanted) side-effect of a put,

the function that needs to be added takes a key and

returns the closest node to that key. It could be called

FindNode. This data-structure, which we call PP-

FFT! (PP-FFT!), is described in more detail in [25].

Application of this data structure to aggregation

demands two related, albeit orthogonal operations:

dissemination ’down’ and aggregation ’up’ the tree.

In the dissemination phase a query is broadcasted

down the tree to every participating node. The ag-

gregation phase does the opposite: the answer from

111 101 100 000

111 101 001

111 011

111

1 0

1 0 0

1 1 0 0

011

011

1

1

110

0

001

1

010

0

Figure 5: Example of a PP-FFT! (the flipped bit is
highlighted at each level) for a 3-bit wide ID-Space,
all nodes present, for Key(111). For homogeneity of
representation the root node is always the left child,
thus the right child always has its corresponding bit
flipped from the root.

every node is routed up the tree towards the root

while being reduced en-route. In a PP-FFT! routing

’up’ the tree is done by fixing both pre- and suffix and

flipping bits in the suffix ’from the rear’, i.e. adding

bits to the front of the matching suffix. Every node

only sends one message but needs to wait for the mes-

sages of all its children to arrive. The Dissemination

phase works the other way around: It starts at the

node with the longest matching prefix and flips bits

in the prefix ’from the front’, thus doing the opposite

as in the aggregation phase: it subtracts bits of the

matching suffix. Since there are k unique bits (with

k = len(matching prefix)) in the prefix that can be
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flipped, the root node needs to send k messages to

other nodes, one for each level. This number might

actually be smaller, depending on how many of those

nodes exist. When represented as a tree (as done in

[25]) this can be made to look like a left-tree, by sort-

ing the nodes such that the root of the tree is always

the left child and its sibling is exactly one flipped bit

away.

Parameters to the build call in PWHN include an

optional root node, as well as operator-graphs con-

sisting of op(s) or program(s) for the following cases:

• Initialize Op-graph that initializes a tuple. It

runs on every leaf of the aggregation tree (i.e.

every physical node) and translates logs into tu-

ples.

• Update Op-graph that reduces the input. It runs

on every internal node and will typically take

more than one input tuple and produce exactly

one output tuple.

• Evaluate Op-graph that runs on the root of the

tree. It takes the last aggregated value and pro-

duces the final output.

This has the advantage of allowing applications to

pass arbitrary data around, by allowing them to spec-

ify their own aggregators for it. These might merely

be a shell script, a php script, or a script in any

scripting language. We plan to implement some ref-

erence operators that take XML data and perform

commonly used functions, like SUM, MAX, AVG etc.

XML has the big advantage of carrying its meta-data

in the form of tags around so that there is no need

for a global schema storage. The local node will then

commence to build the tree and set up local endpoints

on each node that the user has specified (or all if de-

sired). These endpoints will start calling the init ops

or be ready to accept data from the monitored soft-

ware, by named pipes or sockets for example, and

pass it to the init ops. The system will then take

care of executing the programs as specified by the

op-graphs, passing data up the tree towards the root

and finally executing the evaluator op-graph. Opera-

tors will only be executed if they can provide the right

credentials, as determined by the certificate that was

given to the build call.

Our goal is to make application level monitoring

of distributed experiments running on PlanetLab as

researcher-friendly as possible. Setting up monitoring

using our proposed software will take only two steps:

1. Call or send a build message to our system on

the PlanetLab node that is to serve as root, i.e.

the researchers primary PlanetLab node, telling

it your accessor, aggregator and evaluator pro-

grams.
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2. Write three small programs (could be shell

scripts) for the purposes of returning logs for an

application, merging to logs into one, and trans-

lating the final aggregate into a meaningful out-

put.

And that’s it. Our System will take care of the rest.

7 Acronyms

ACL Access Control List

ADHT Autonomous DHT

ADT Abstract Data Type

AO Aggregation Overlay

C.S. Computer Science

DBMS Database Management System

DHT Distributed Hash Table (see ??)

DNS Domain Name System

FTT FingerTable-based Tree (see ??)

KBR Key-Based Routing layer (see ??)

KBT Key-Based Tree (see ??)

LAN Local Area Network

MIB Management Information Base

OA Organizing Agent

OS Operating System

P2P Peer-to-Peer

PIER P2P Information Exchange & Retrieval

PWHN PlanetenWachHundNetz

RO Routing Overlay

SA Sensing Agent

SDIMS Scalable Distributed Information
Management System

SNMP Simple Network Management Protocol

SOMO Self-Organized Metadata Overlay

SQL Structured Query Language

TAG Tiny AGgregation service

TCP Transmission Control Protocol

UDP Universal Datagram Protocol

UTEP University of Texas at El Paso

XML eXtensible Markup Language
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Table 1: Overview of Related Systems

Name Type RO AO Deployed on Language Notes
PIER query exec. DHT FTT PlanetLab UFL Java Type System
Sophia query exec. static static PlanetLab Prolog
Astrolabe hier. aggr. DB DNS gossip - SQL Security
Willow query exec. KBT KBT (dyn:age) - SQL

SDIMS hier. aggr. DB ADHT FTT Dept. + PlanetLab aggreg. : C
SOMO meta-data DHT KBT (stat:center) - host any ADT

IrisNet SensorNet DNS OA PlanetLab XPath “rich” sensors
TAG query exec. (SN) broadcast simple tree PlanetLab enriched SQL mote
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