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Abstract

The distributed and highly dynamic nature of Peer-to-Peer (P2P) systems can make in-

strumentation and development difficult. Instrumenting a system aids development by

producing debugging and status information. Moreover, collection of data from such sys-

tems has the potential to produce vast amounts of data that preclude the use of approaches

that collect unfiltered logs from many participating nodes. My research investigates the

dynamic generation of trees that permit the efficient aggregation of data extracted from

nodes by enabling the use of parallel prefix computations on P2P systems. These auto-

matically structured parallel prefix operations are used to permit the efficient collection of

instrumentation data.

This paper describes PlanetenWachHundNetz (PWHN), an integrated instrumentation

toolkit for distributed systems that uses the dynamically organized parallel prefix mech-

anisms I investigated. Like Google’s MapReduce, PWHN utilizes user supplied programs

to extract data from instrumented hosts and aggregate this data. In addition, convenient

Graphical User Interfaces (GUIs) are provided to display collected data and generate plots.

In order to evaluate the effectiveness of the parallel prefix aggregation mechanisms I in-

vestigated, PWHN supports both a centralized and distributed aggregation mode. PWHN’s

first (centralized) implementation has been useful for instrumentation and tuning of the

live Fern installation on hundreds of PlanetLab nodes, but is not scalable. In contrast,

the second implementation employs more scalable algorithms that dynamically construct

data aggregation trees using P2P techniques and thus is potentially scalable to much larger

deployments.
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Chapter 1

Overview and Problem

1.1 Introduction

Distributed systems are generally designed to satisfy a target problem’s requirements.

These requirements frequently do not include instrumentation of the system itself. As a

result, the designs typically do not include instrumentation infrastructure, which makes tun-

ing and debugging difficult. Furthermore, focusing upon adding this infrastructure might

distract an engineer from designing for performance and thus can introduce an unaccept-

ably high overhead to the system even when it is not used - compared to a system designed

without instrumentation in mind. The objective of PlanetenWachHundNetz (PWHN) is to

develop infrastructure suitable to assist the instrumentation of self-organizing distributed

applications that lack data collection and aggregation mechanisms.

The instrumentation and tuning of Peer-to-Peer (P2P) systems can require the analyses

of data collected from a large number of nodes. If the data has not been selected and

aggregated properly by the providing nodes, the resulting amount of data may be too

large to use available communication and storage capabilities. Moreover, if it is sent to a

single, central collection point for analysis, that node’s resources might become saturated.

Therefore, centralized solutions may be impractical. Thus, it may be desirable to aggregate

summaries of data in a distributed manner, avoiding the saturation of a “master” host who

would directly transmit instructions to and receive data from all of the other (slave) nodes.

Google’s MapReduce was designed for the distributed collection and analysis of very

large data-sets, in environments with groupings of participants located in dedicated compu-

tation centers that are known a-priori. A user of MapReduce specifies arbitrary programs
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for its map and reduce phases. The Map phase “selects” the data to be aggregated and

outputs them in the form of intermediate key/value pairs; afterwards, the Reduce phase

digests these tuples grouped by their key into the final output. These selection and aggre-

gation programs can frequently be easily constructed using the many convenient scripting

programs commonly available on unix systems and then linked against the MapReduce

library (written in C++).

PWHN extends the MapReduce model to P2P. The primary difference between the envi-

ronment MapReduce was designed for and P2P-networks is that the set of active participants

and their logical groupings frequently changes in P2P systems. Conventional approaches

of pre-structuring aggregation and distribution trees are inappropriate given P2P system’s

large churn1 of membership.

A measuring infrastructure for distributed systems faces the challenges of selection and

aggregation of relevant data under churn, while ensuring good usability.

PWHN utilizes P2P techniques including Key-Based Routing layers (KBRs) and a data-

structure that extends existing algorithms for guiding the construction of an aggregation

tree upon the internal structure of Distributed Hash Tables (DHTs).

1.1.1 Coral

Consider Coral [8], a load-balancing P2P-Content Distribution Network (CDN) implemented

as a HTTP proxy for small-scale servers that cannot afford large-scale dedicated solutions

like akamai. It is referenced by many private websites and provides high availability. Like

many distributed applications Coral’s construction does not include instrumenting and

logging infrastructure, thus it is hard to hard to tune and determine its limits of scalability.

After this was discovered, a logging and collection infrastructure was crafted onto Coral.

This approach was centralized, a central server outside of Coral just requested all logs

1Churn means the characteristic of a normal P2P system that nodes frequently join and leave; thus, the

membership “churns”
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and inserted them into a database. This technique did not scale well and was therefore

discontinued quickly.

We learned of Coral’s misfortune and decided that it is a hard problem to collect and

aggregate statistics about a P2P application. It was my motivation to build a system to

make this process easier for application designers.

1.2 The Problem

The previous section introduced three distinct problems.

1. Distributed Selection: the problem of doing efficient filtering of data near to collec-

tion points. PWHN uses the approach of MapReduce that permits users to specify

programs that are executed on the systems generating data that locally select (and

possibly pre-process) the data to be collected.

2. Distributed Aggregation: efficient reduction of data from a large number of sources

throughout a P2P system through the composition of appropriate associative and

communitive operations to reduce the volume of data transmitted back to the “mas-

ter”. Solution hint: Logging and instrumentation systems are amenable to parallel

prefix.

3. Churn and how to build the tree: refers to the problem of creating and maintaining an

efficient dissemination and reduction tree in a highly dynamic environment. Churn of

membership in P2P systems makes it necessary to dynamically generate aggregation

trees among the set of nodes participating in the P2P system. Our solution leverages

the structure of DHTs and makes use of hashes after the initial dissemination phase

to avoid sending data twice.
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1.3 Research Objective and Goal

The research objective of this thesis was to develop a system to efficiently collect, aggregate

and summarize data collected from single nodes of a P2P application. This is done through

extension of ideas from MapReduce, i.e. allowing arbitrary programs for all three phases; as

well as by extending data-structures that build aggregation trees upon structured routing

algorithms.

PWHN’s principle objective is to produce a useful tool that instruments P2P systems,

such as those investigated by the community of researchers who utilize PlanetLab to inves-

tigate self-structuring (P2P) applications and protocols. It was motivated in part by the

failure of Coral’s logging and measuring infrastructure. We wanted to design a program

that could do better.

Google’s MapReduce demonstrates the utility of a generic tool for aggregation for non-

P2P systems because it effectively distributes the load of selection and aggregation, thus

minimizing perturbation.

My work extends MapReduce to full-P2P environments through the utilization of struc-

tured P2P techniques and thus provides a testbed for evaluating the effectiveness of their

approach.

1.4 Organization

This thesis is organized as follows. Chapter 2 describes previous work that is relevant to my

research and introduces related data-structures. Chapter 3 introduces techniques utilized

by PWHN to detect the set of active nodes and construct an aggregation tree. Chapter 4

provides greater detail of the design. Chapter 5 describes experiments and evaluates the

results. Chapter 6 enumerates possible work that might be an interesting point for future

research. Chapter chapter 7 concludes. A glossary lists all acronyms used in this thesis.

Several appendices provide details of components utilized ( Appendix A to Appendix E).
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Chapter 2

Related work

2.1 Introduction

Several researchers have considered the challenge of collecting and aggregating data from

a network of distributed information sources. Distributed-Database Management Systems

(DBMSs) (see subsection 2.6.2) route results from systems that generate query responses

towards systems that aggregate them, Sensor Networks (see subsection 2.6.4) gather data

from widely distributed nodes with limited communication and computational resources,

and lastly, monitoring of both distributed systems and applications collect meta-data (logs)

and make use of Aggregation Overlays (see subsection 2.6.3) to send them to a central

location and reduce them en-route.

A key problem of centralized aggregation approaches is that the amount of data sent

towards one node for processing can saturate computational and network resources near

to the “centralized” collection point. With the growth of large distributed systems, the

importance of data aggregation is likely to increase. Thus, it is desirable to push as much

computation of the collected data as possible out to a distributed aggregation infrastructure

near to the sources. This has the added advantages of distributing load in the network more

evenly as well as localizing network traffic.

Like D-DBMS in which computation is performed at aggregation nodes near to data

sources in order minimize network congestion and distribute the computation required

to select and join results, systems that generate logs, have the advantage that these logs

mostly reflect the same statistics making them homogenous. Thus, if they can be aggregated

using a commutative and associative operation they are amenable to reduction through the
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natural application of parallel prefix techniques (see section 2.2).

2.2 Parallel prefix and MapReduce

Addition is an associativ operator which, in this case, means the following: x + (y + z) =

(x + y) + z. It is also commutative which can be written as: x + y = y + x. The same

is true, for example, for min and max. The average function is only approximately an

associativ function because the average of three inputs cannot be computed in any order.

Nevertheless is it usable in parallel system by the addition of a count of the number of

elements in addition to the sum of them.

As others have done ([22] et al.), it can be observed that this can be used to parallelize

the algorithm for larger inputs.

Google’s MapReduce provides a convenient interface to distributed parallel prefix op-

erations. A user of MapReduce provides two scripts: one to map data to a “collection”

space, and a “reduction” program which implements a commutative and associative “ag-

gregation” operation. MapReduce solves the aggregation part of the problem introduction,

as given in item 2.

Unlike MapReduce, which imposes (and benefits from) a tuple-structured system, PWHN

sends opaque data, and thus is more flexible in what it can transmit. Moreover, the MapRe-

duce library groups all intermediate tuples on the key and passes all values pertaining to the

same key to the Reduce operator at once; whereas PWHN does not try to parse intermediate

streams to determine their keys, but instead just passes two outputs to the Aggregator.

MapReduce does not support specification of an Evaluator, because it was not meant

to produce a single ouput from the reduce phase, but rather one result per key. In contrast,

PWHN allows the user to provide a program for the evaluation that is passed the last output

from the Aggregator to be able to perform some post-processing.
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2.3 Distributed Hash Tables (DHTs) and their Key-

Based Routing layers (KBRs)

My work extends key-based routing techniques. This section provides an overview of DHT

and key-based routing, which were developed as pragmatic solutions to challenges in P2P

systems. In order to motivate and describe DHTs and KBR techniques, this section reviews

the history and structure of these earlier systems. For pedagogic reasons it is a historical

narrative.

2.3.1 A Short History of P2P

The first Generation of P2P started with Napster in 1999. Napster was a P2P file sharing

system that permitted users to efficiently obtain files published by other users. Napster

used a central server for indexing files and thus had a central point of failure. “Peers”

participating in Napster both requested named files directly from and transmitted named

files directly to other peers. However, Napster was not fully P2P because it utilized a central

host responsible for maintaining an index of which “data” each peer contained. Thus, every

peer transmitted a list of the files it shares to this master who would subsequently share

the information with other peers. From this list each peer can determine from who to

request specific files. A historical note: Napster was forced to discontinue service in 2001

as a result of litigation regarding its use to transmit copyrighted material.

Even before Napster’s shutdown, Second Generation P2P systems started to appear.

Nullsoft’s Justin Frankel started to develop a software called Gnutella in early 2000, right

after the company’s acquisition by AOL. They stopped the development immediately be-

cause of legal concerns, but it was too late since the software was already released and the

protocol was reverse-engineered and subsequently taken over by the open-source commu-

nity.

Gnutella was a fully P2P system because both searching and downloading of files was
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completely decentralized. The search relied on flooding: a client requesting a file trans-

mitted a search message to all its known immediate peers specifying an initial Time-To-

Live (TTL) of approximately 5 hops. Receiving peers searched through their own file list,

returned a result when found and re-broadcasted the message with a decremented TTL.

When the TTL reached zero, the message was discarded. This approach to searching a

distributed index is neither efficient nor guaranteed to be complete, i.e. find scarce data in

the network. Unlike Napster’s central indexing server, Gnutella’s indexing mechanism was

fully distributed and thus proved very hard to shutdown. It is still in use, albeit with a

updated protocol (version 2).

Third Generation is often used as a term to refer to everything that followed. Third gen-

eration P2P systems utilize both central and decentralized techniques. Instead of identifying

files by name (which can be easily spoofed), these systems began employing hash digests1

to refer to files and employing partial, often called swarm, downloading. This enables users

to rename files, while still allowing the system to reference these files uniquely.

Swarm downloading splits large files into smaller parts and downloads different parts

from different peers. This allows (mostly implicit) partial sharing before the file is down-

loaded completely, thus speeding up distribution.

The most notable third generation P2P network is the edonkey2000 network, which

is still widely in use. It also appeared around the time Napster was shut down, and in

2004 overtook FastTrack (owner of Morpheus, another SecondGen file-sharing network)

to become the most popular file-sharing network. It uses central servers for file indexing

and connects to peers directly for downloading, much like Napster did. Unlike Napster,

eDonkey democratizes indexing by permitting that function to be implemented by multiple

peers. As a result of this, eDonkey has also proven difficult to disable.

1A hash digest of a file is generated by hashing the file’s contents using a well-known hash function, e.g.

SHA-1.
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2.3.2 The Advent of DHTs

Around 2001 researchers started to investigate ways to make searching in unorganized

systems more efficient. This eventually lead to the conecpt of a Distributed Hash Table

(DHT), of which the first four [37, 41, 45, 55] were all released in 2001.

DHTs are designed around these three central properties:

1. Decentralization,

2. scalability, and

3. fault tolerance.

A DHT is built upon the abstract notion of a keyspace. Ownership of this keyspace

is split among all participating nodes, who are assigned random keys out of this space,

according to a particular scheme that depends on the implementation. The DHT builds a

(structured) overlay network over all nodes which allows it to find the owner of a given

key in O(log(n)) time; for an n-bit id-space. Following [6], this (underlying) part of the

DHT is commonly referred to as the Key-Based Routing layer (KBR).

The KBR guarantees to route a message to the owner of a given key in O(logk(n)) hops

for an n-bit wide ID-space. To do this, the KBR employs a k-ary search in the ID-space by

recursively partitioning the search space in a divide-and-conquer fashion. For example the

Chord DHT iteratively divides the search space in half; other radixes are possible. Thearity

depends on the base that the KBR defines its IDs to be. Without loss of generality I assume

them to be base 2 in my examples, like most DHT implementations do today.

IDs are uniformly selected identifiers in a large discrete field. To change any number

to any other, all that needs to be done is to “correct” digits in the source number starting

from the beginning until the target number is reached. For this, at most “number-of-digits”

steps are needed. Since the number of digits of any number depends on the base, this would

take at most O(logk(n)) for base k.
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Thus, to send a message from any ID to any other we only have to “correct” one digit

of the ID at each step. For IDs defined in base 2 this is basically employing a distributed

binary-search by making a routing decision at each node. It checks in which range (subtree

of the search-tree) the target ID falls and forwards the message to a node in that subtree.

DHTs export an interface that is close to that of a normal hash table, hence their name.

Like a conventional (non distributed) hash table, a DHT stores key : value pairs that can

be efficiently indexed by “key.”

Upon calling put(key, val), the key is replaced by its hash using a well-known hash

function by the DHT, which then sends message containing (key,val) to the owner of of the

hash of the key h(key). This message is forwarded to the node that owns this key, which

in most implementations, is the node whose host-ID is closest to the given key. Later the

value can be retrieved from this node using the hash of the key to forward a get message

to it. A primary feature of consistent hashing is its “consistency,” which means that all

nodes use the same hash function and key space, and thus, should agree on the assignment

of keys to nodes. Uniform distribution of the hash space is a secondary (but desirable)

property.

Thus, the only difference between a traditional hash table and a DHT is that the hash

bucket “space” is dynamically partitioned among participating nodes.

It is impossible to achieve fully reliable operation in a large distributed system. As a

result, most P2P systems instead provide sufficient best effort reliability to be useful without

attempting to be fully reliable. For example, a P2P system may attempt to “remember”

data stored within it only for a short duration in time. However, the failure of a small set

of nodes may cause the data to be lost, and a node requesting a forgotten datum may need

to refer to a canonical origin server from where it can refresh the P2P system’s memory.

State stored within these systems is thus volatile; and in contrast to state stored within

stable (hard) storage, these systems’ states are referred to as soft. A participating node

forgets stored tuples after a certain time, thus they need to be renewed if they are to be

kept around. This ensures that tuples can move should the ownership change either by
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nodes leaving or joining or that they can disappear if not needed anymore without explicitly

having to send a delete message. Apart from using soft-state, most implementations also

use replication to prevent tuples from disappearing when nodes leave.

For a more complete description of how a DHT works, its KBR and their interfaces, refer

to Appendix B. DHTs and their KBRs solve item 3 of the problem.

2.4 PlanetLab

PlanetLab [28, 30] is a consortium of research institutions distributed throughout our planet

donating machines that contribute to a common goal. This goal consists of being able to

test widely distributed services in their natural habitat, i.e. in a network that is comprised

of nodes scattered around the globe, their connection to the Internet being the only thing

they share. By joining PlanetLab, an institution agrees to donate at least two nodes to

the cause. In exchange, the institution earns the permission to request slices of it. A slice

can be seen as a “slice” of all the global resources of PlanetLab. The slice is a collection of

Virtual Machines (VMs) running on a set of PlanetLab nodes. This slice can then be used

to perform experiments that require a large number of distributed machines, for example

experimental network services.

University of Texas at El Paso (UTEP) is a member of PlanetLab, which permitted me

to use it to develop and evaluate PWHN.

For a description of the PlanetLab environment please refer to Appendix A.

2.5 Data structures

In this section, I describe two approaches for building aggregation trees upon DHTs that

I investigated in my research. Several independent research groups developed their own

structures for this. Since there exists no standard nomenclature for these algorithms (the
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authors of these papers do not name their algorithm), I introduce my own notation for

these techniques to avoid confusion.

This description of the data structures used also appears in [24].

2.5.1 KBT

Almost all DHTs, sometimes referred to as Prefix-based Overlays or Structured Overlays,

build on Plaxton et al.’s [31] groundbreaking paper (because of the first letters of the

author’s surnames - Plaxton, Rajaraman, and Richa - known as PRR) on routing in un-

structured networks.

Key-Based Trees (KBTs) use the internal structure of the trees that Plaxton-style [31]

systems automatically build for routing in the following way. These key-based routing

protocols populate a flat identifier space by assigning long bit-strings to hosts and content

which are simply 160-bit integer identifiers. Two keys that have n most significant bits of

their IDs in common are described to have a “common prefix” of length n. Thus, “prefixes”

of IDs function as “search guides” since they are prefixes of actual node keys. Now consider

the following. Each node is the root of its own “virtual” tree. Both nodes at depth n have

(n− 1)-bit prefixes in common with their root, while the next (nth) bit is 0 for the left and

1 for the right child. The result is a global, binary tree.

This assumes that the DHT fixes exactly one bit per hop. DHTs that fix more than one

bit per hop will have a correspondingly higher branching factor. Since actual nodes will

always have complete bit-strings, all internal nodes that are addressable by a prefix are

“virtual,” in the sense of the tree. The physical nodes are the leafs of the tree and can be

reached from the root (“empty prefix”) by a unique path. Since the relationship between

tree nodes and their place in the ID-space is unambiguous, meaning that the tree is fully

defined by a set of node keys, I have termed this data-structure Key-Based Tree (KBT).

Each DHT defines a distance metric that defines “nearby” nodes and guides searches.

Two examples of systems that use KBTs are Willow [48] and SOMO [54].
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Figure 2.1:
Sample KBT with six nodes using a 3-bit wide ID-space and a static
approach in which the left child assumes the parent role (“Left-Tree”).
The bottom part of the figure shows the “virtual” tree, whereas the top
part shows the resulting real messaging routes.

Classification

The designers of an implementation of a KBT define its tie-breaking behavior, meaning

which child will be responsible for its “virtual” parent, since both children match their

parents’ prefix. There are two basic approaches.

1. Static algorithms are deterministic for the same set of nodes and can only change if

that set changes.

2. Dynamic algorithms determine the parent based on characteristics of the involved

nodes, i.e. “in-vivo” (may even be evaluated in the form of queries). This has the

effect that the choice is not deterministic, i.e. can be different for the same set of
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nodes, and can change during its lifetime.

Choices of a dynamic approach are based on age, reliability, load, bandwidth or based

on a changeable query. Static algorithms can only choose the node that is closest to a a

deterministic point of the region (e.g. left, right, center). A static choice has the advantage

of predictability, provided you have a rough estimate about the number of nodes. This

predictability allows making informed guesses about the location of internal nodes in the

ID space.

2.5.2 FTT

Routing towards a specific ID in key-based, structured overlays works by increasing the

common prefix between the current hop and the target key until the node with the longest

matching prefix is reached. The characteristic of DHTs, that a message from every node

towards a specific ID takes a slightly different path, leads to the realization that the union

of all these paths represents another tree which covers all live nodes - a different one for

each ID. Thus, unlike KBTs, where the mapping nodes and the tree is fully defined by the

set of node IDs, this tree is ambiguous - i.e. is dependent on finger table content.

These trees are like inverted KBTs; the exact node with the longest matching prefix is the

root, whereas in a KBT every node could be the root depending on its tie-breaking algorithm,

since every ID matches the empty prefix. Since this tree depends on the fingertables of all

live nodes, I call it a FingerTable-based Tree (FTT).

Example systems that use FTTs are PIER [16, 17, 29] and SDIMS [53].

Classification

FTTs can be classified by their result-forwarding strategy: i.e. at what time aggregated

results are sent to the parent. There are two possible options for this parameter:

1. Directly after child-update: The new result is sent to the parent directly after a child

sends new data. This necessitates caching of incomplete results for running queries.
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Top: Example graphical representation of all paths from 6 nodes to-
wards Key(111) for a 3-bit wide ID-Space (the matching prefix is high-
lighted on each node and the corrected bit on each route), and the
resulting FTT (bottom)

2. After children complete: New result is only sent to the parent after it is sufficiently

complete (or stabilized). This necessitates a guess about the number of children which

is another parameter when using this option.

2.5.3 Discussion

In this section I quickly compare the two introduced algorithms.

KBTs are binary if the underlying DHT fixes one bit per hop and every node is at the

same depth ,i, i=bits in ID. Generally they are not balanced.

In contrast, FTTs are likely never balanced, and moreover not all nodes will be at the

same level. In addition, they do not have to be binary. These properties make their
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usefulness as aggregation trees questionable, because of the possible lack of balance and

completeness.

Some advantages of FTTs over a KBT are:

• There may be as many FTTs as needed by having the root depend on the hash of

some characteristic of the query resulting in better load-balancing.

• Trees in FTTs can be rooted at any node.

• Trees in FTTs are kept in soft-state, thus there is no need to repair them, since they

disappear after a short time.

The described data-structures both solve item 2 and, in addition, item 3 of the problem.

2.6 Survey of related P2P systems

This section is a review of P2P-systems which are classified using the nomenclature defined

in the previous section.

Figure 2.3: Rough classification of related systems into the three categories
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2.6.1 Concepts

Routing Overlay (RO) All data collection and aggregation systems have to set up

some kind of overlay network above the bare P2P transport network to provide routing.

Consequently, I will call this abstraction the RO.

There are three common techniques.

1. flood,

2. gossip, and

3. using the KBR.

Flooding is the oldest and most inefficient approach of the three. It is used by some

P2P file-sharing networks (see subsection 2.3.1).

Systems like Astrolabe (see 2.6.3) [47] employ a technique termed gossiping. The epi-

demic, gossiping protocol achieves eventual consistency by gossiping updates around, thus

it has no need for routing since every node is assumed to know everything about the state

of the system. The idea comes from the field of social studies from the realization that

within a small group news propagate very fast by gossiping. It has an advantage in the

case when inter-node status comparison does not dominate communication, i.e. when the

group is small enough or the update-rate is low.

In most later systems routing services are provided by the DHT [20, 26, 37, 40, 41,

45, 55]. PRR’s work [31] left room for aggregation in its trees, whereas most modern

implementations disregard this feature.

Aggregation Overlay (AO) Query dissemination by branching and data concentration

back up the tree is done through the AO. This overlay tends to resemble its most closely

related natural object in the form of a tree. Though every system employs some kind of

tree, even if it is not explicit as in a gossiping system, the building algorithms as well as the

actual form of these trees are vastly different. Astrolabe, does not need to explicitly build
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a tree for its groups on run-time because it relies on the user specifying a name hierarchy

on setup-time. Each name prefix is called a zone, and all those nodes whose Domain Name

System (DNS) name starts with the same string are members of that specific zone. It builds

a tree, whose nodes are the zones, out of the hierarchy, albeit one that might have a very

high branching factor (number of sub-zones to each zone and number of nodes in each

leaf-zone).

Summary In summary, designers of monitoring systems have the choice of maintaining

only one global KBT, building a FTT for each query or query-type, or building their own

algorithm that is not relying on a DHT, e.g. flooding or gossiping. Furthermore, they have

to decide how to handle aggregation using these trees once they are built. Data has to

be passed up somehow for aggregation. The obvious choice of re-evaluating aggregates on

every update of any underlying value might not be the best choice, however. A lot of unused

traffic results from rarely-read values that are updated frequently. Thus, a solution could

be to only re-evaluate on a read. On the other hand, if frequently requested variables are

seldomly written, this strategy leads to a lot of overhead again. Therefore, some systems,

such as Scalable Distributed Information Management System (SDIMS) (cf. 2.6.3), adopt

the concept of letting the aggregate requester choose these values. Known as up-k and

down-j parameters, these values specify how far up the tree an update should trigger a

re-evaluation, and after this, how far down the tree a result will be passed. Most systems

implicitly use all for these values, this is why SDIMS’ k and j parameters default to “all.”

2.6.2 Distributed Databases

Distributed-DBMSs route results from systems that generate query responses towards sys-

tems that aggregate them. They are designed to closely approximate the semantics of

traditional DBMS. The two most closely related systems are summarized in this section.
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PIER

The P2P Information Exchange & Retrieval System [16, 17, 29], which is being developed

by the DBMS team at UC Berkeley, is a project meant to be a fully-fledged, distributed query

execution engine. It is a DHT-based, flat, relational DB. It has mostly been discontinued

in favor of PHI [4].

Like commercial DBMS, it utilizes traditional boxes-and-arrows (often called opgraph)

execution graphs. As its RO Pier uses a DHT. It has successfully been implemented on CAN

[37], Bamboo [40] and Chord [45]. P2P Information Exchange & Retrieval (PIER) uses a

single-threaded architecture much like SEDA [51], is programmed in Java and is currently

deployed on PlanetLab [28, 30] (now called PHI). The basic underlying transport protocol

PIER utilizes is Universal Datagram Protocol (UDP), although enriched by the UdpCC

Library [40], which provides acknowledgments and Transmission Control Protocol (TCP)-

style congestion handling.

A query explicitly specifies an opgraph using their language called UFL. Structured

Query Language (SQL) statements that are entered get rendered into an opgraph by the

system. This graph is then disseminated to all participating nodes using an index (see

below) and is executed by them. For execution, PIER uses an lscan operator, which is

able to scan the whole local portion of the DHT for values that match the query. To find

nodes that might have data for a query, PIER supports three indices that can be used just

like indices of any DBMS: true-predicate, equality-predicate and range-predicate. These

predicates represent the AO.

Upon joining the network every PIER node sends a packet containing its own ID to-

wards a well-known root that is a-priori hardcoded into PIER. This serve the purpose of

a rendezvous point for building the tree. The next hop that sees this packet drops it and

notes this link as a child path. These paths form a parent-child relationship among all the

nodes, a tree. This is the true-predicate; it reaches every node.

The DHT key used to represent data stored within PIER is the hash of a composite of

the table name and some of the relational attributes and carries a random suffix to separate
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itself from other tuples in the same table. Thus, every tuple can be found by hashing these

distinguishing attributes. This is the equality-predicate.

The range-predicate is set by overlaying a Prefix Hash Tree (PHT [38]) on the DHT. It

is still not fully supported by PIER.

Once result tuples for a query are produced, they are sent towards the requester by

means of the DHT. The query is executed until a specifiable timeout in the query fires.

For aggregation queries, PIER uses one FTT per query. Every intermediate hop receives

an upcall upon routing and gets a chance of changing the complete message; including its

source, sink, and next hop.

PIER uses the Java type system for representing data; its tuples are serialized Java

objects. They can be nested, composite or more complex objects. PIER does not care

about how they are actually represented, other than through their accessor methods.

PIER is unique in its aggressive uses of the underlying DHT, such as for hashing tuples by

their keys, finding joining nodes (PHT and indices), hierarchical aggregation and execution

of traditional hashing joins. Although [15] suggests that PIER’s performance is not as

expected, it remains an interesting system for querying arbitrary data that is spread-out

over numerous nodes.

Sophia

Sophia [50] is a Network Information plane, developed at Princeton and Bekeley. Like

other P2P systems, Sophia was evaluated on PlanetLab. A network information plane is

a “conceptual” plane that cuts horizontally through the whole network and thus is able

to expose all system-state. Consequently, every system described here is an information

plane.

While the sophia project does not explicitly address the dynamic structuring of an

aggregation operation, its function as a distributed query and aggregation engine is relevant

to PWHN. Sophia does not qualify as a P2P system, from what can be told from [50]. I

decided to include it here because it is a system that takes a completely different approach
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to expressing queries.

Sophia supports three functions: aggregation, distributed queries and triggers. Queries

and triggers can be formulated using a high-level, Prolog-based logic language or using

the (underlying) low-level, functor-based instruction set. The authors chose a subset of

the Prolog-language because both a domain-tailored description and a declarative query

language incorporate a-priori assumptions about the system.

Every statement has an implicit part that evaluates to the current NodeID and Time.

Thanks to this, Sophia has the ability to formulate statements involving time, as well

as caching results. Queries can explicitly state on which nodes to evaluate particular

computations. Sophia’s query unification engine will expand a set of high-level rules into

lower-level explicit evaluations that carry explicit locations. This also gives rise to the

ability to rewrite those rules on the fly, thereby allowing in-query re-optimization. In

addition, Sophia’s implementation of Prolog has the ability to evaluate and return partial

results from “incomplete” statements, i.e. expressions in which some subexpressions cannot

be evaluated. An example of this being due to non-reachable nodes.

The run-time core is extendable through loadable modules that contain additional rules.

Security within Sophia is enforced through capabilities. Capabilities are just aliases for rules

that start with the string cap and end with a random 128-bit string. To be able to use

a particular rule, a user must know its alias because the run-time system makes sure its

original name cannot be used. The system also prevents enumerating all defined aliases.

To avoid caching aliases in place of the real results, caching is implemented in a way that

all capability-references are resolved before storing an entry.

The current implementation on PlanetLab runs a minimal local core on each node,

with most of the functionality implemented in loadable modules. All terms are stored in

a single, flat logic-term DB. Sensors are accessed through interfaces that insert “virtual”

ground terms into the terms-DB, thereby making sensor-readings unifiable (processable by

queries).
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Summary

D-DBMS are a good approach to expressing arbitrary queries on a distributed set of nodes.

Commonly they focus on keeping as much of the ACID semantics as possible intact, while

still allowing the execution of distributed queries on a network of nodes. For all intents

and purposes of a monitoring system, keeping the ACID semantics is not as important as

having greater expressiveness for queries. This is not given in either PIER or Sophia because

the former uses SQL whereas the latter uses Prolog to express queries.

2.6.3 Aggregation Overlays

Aggregation overlays are designed to provide a general framework for collection, trans-

mission and aggregation of arbitrary data from distributed nodes. Generally, they are

constructed to allow data that belongs to a specific group, like the group of relational data.

This section introduces four aggregation systems.

Astrolabe

Astrolabe [1, 47] is a zoned, hierarchical, relational DB. It does not use an explicit RO as

in a DHT. Instead, it relies on the administrator setting up reasonably structured zones

according to the topology of the network by assigning proper DNS names to nodes. For

example, all computers within UTEPs Computer Science (C.S.) department might start

with “utep.cs.” Following the protocol they will all be within the zone named “utep.cs,”

providing locality advantages over a KBT/FTT approach. Bootstrapping works by joining a

hardcoded multicast group on the Local Area Network (LAN). In case that does not work

Astrolabe will send out periodic broadcast messages to the LAN, for other nodes to pick

up.

Locally available (read: published) data is held in Management Information Bases

(MIBs), a name that is borrowed from the Simple Network Management Protocol (SNMP)

[3]. The protocol keeps track of all the nodes in its own zone and of a set of contact nodes in
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other zones which are elected by those zones. Astrolabe uses the gossip protocol introduced

in the introduction.

Each node periodically runs the gossip protocol. It will first update all its MIBs and

then select some nodes of its own zone at random. If it is a representative for a zone, it

will also gossip on behalf of that zone. To that end it selects another zone to gossip with

and picks a random node from its contact list. If the node it picked is in its own zone it

will tell that node what it knows about MIBs in their own zone. If the node is in another

zone it will converse about MIBs in all their common ancestor zones. These messages do

not contain the data; they only contain timestamps to give the receiver a chance to check

their own MIBs for stale data. They will send a message back asking for the actual data.

Aggregation functions, introduced in the form of signed certificates, are used to compute

aggregates for non-leaf zones. They can be introduced at runtime and are gossiped around

just like everything else. Certificates can also be sent that change the behavior of the

system. After updating any data, including mere local updates, Astrolabe will recompute

any aggregates for which the data has changed.

Summarizing, this means that Astrolabe does not use routing at all. All the information

one might want to query about has to be “gossiped” to the port-of-entry node. If one wants

to ask a question, one has to install the query and wait until its certificate has disseminated

down to all nodes (into all zones) and the answer has gossiped back up to him or her. This

makes its Gossip Protocol the AO. Thus, Astrolabe does not have an RO according to my

definition.

Astrolabe incorporates security by allowing each zone to have its own set of policies.

They are introduced by certificates that are issued and signed by an administrator for that

zone. For that purpose each zone contains a Certification Authority, which every node in

that zone has to know and trust. PublicKey cryptography, symmetric cryptography, and

no cryptography at all can all be used in a zone. Astrolabe at present only concerns itself

with integrity and read/write Access Control Lists (ACLs), not with secrecy.

Astrolabe is an interesting project which has some compelling features, like security,
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but has been superceeded by Willow (cf. 2.6.3).

Willow

Willow [48] is a DHT-based, aggregating overlay-tree (a KBT). It uses its own Kademlia-

like [26] DHT implementation. It seems to be an implicit successor to Astrolabe since it,

according to the authors, inherits a lot of functionality from Astrolabe, at the same time

choosing a more well-treaded path. Willow uses TCP and is currently implemented in

roughly 2.3k lines of Java code (excluding SQL code).

Willow defines its domains, much like the zones in Astrolabe, to be comprised of all the

nodes that share the same prefix, i.e. that are in the same subtree of the KBT. Following

this definition, every node owns its own domain, while its parent domain consists of a node

and its sibling.

Like the zones in Astrolabe, every domain elects both a candidate and a contact for

itself. The contact is the younger of the two child nodes (or child contacts), whereas the

candidate is the older. Thus Willow uses a dynamic election scheme based on age. The

contact of a domain is responsible for letting its sibling know about any updates which will

then disseminate them down its own subtree.

Willow comes equipped with a tree-healing mechanism but did not inherit Astrolabe’s

security features.

SDIMS

The Scalable Distributed Information Management System [52, 53] is a system based on

FTTs, which is developed at the University of Texas at Austin. It is implemented in Java

using the FreePastry framework [41] and has been evaluated on a number of departmental

machines as well as on 69 PlanetLab nodes.

The authors state that they designed it to be a basic building block for a broad range

of large-scale, distributed applications. Thus, SDIMS is meant to provide a “distributed

operating system backbone” to aid the deployment of new services in a network. Flexibility
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in the context of SDIMS means that it does not assume anything about properties of your

data a-priori, for example the update-rate of variables. Instead, up-k and down-j parameters

are given while registering a query.

SDIMS respects administrative domains for security purposes by using what is called an

Autonomous DHT (ADHT). It does so by introducing superfluous internal nodes into the

FTT whenever the isolation of a domain would otherwise have been violated. Running a

query is driven by three functions; install, update and probe.

• Install registers an aggregate function with the system. It has three optional at-

tributes: Up, down, and domain.

• Update creates a new tuple.

• Probe delivers the value of an attribute to the application. It takes four optional

arguments: Mode ∈ [continuous, one− shot], level, up, and down.

SDIMS does not, however, split the aggregation function further into three smaller op-

erators, like in Tiny AGgregation service (TAG).

The current prototype neither implements any security features nor restricts resource

usage of a query. Future implementations are planned to incorporate both.

SOMO

The Self-Organized Metadata Overlay [54], which is developed in China, is a system-

metadata and communication infrastructure to be used as a health monitor. A health

monitor can be used to monitor the “health” of a distributed system, meaning it provides

information about the system’s state (good or bad).

It relies on a so-called Data Overlay that allows overlaying arbitrary data on top of any

DHT. It facilitates hosting of any kind of data structure on a DHT by simply translating

the native pointers into DHT keys (which are basically just pointers to other nodes). To

work on a data overlay a data structure has to be translated in the following way:
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1. Each object must have a key, and

2. for any pointer A store the corresponding key instead.

Self-Organized Metadata Overlay (SOMO) also stores a last known host along with the

key to serve as a routing shortcut. This data overlay on a fairly static P2P network has the

ability to give applications the illusion of almost infinite storage space.

SOMO builds this structure, which is very similar to a KBT, on top of an already

existing DHT in the following way. The ID space is divided into N equal parts, with

N = Num(Nodes). A SOMO node is responsible for one of these parts. From this range

a key will be derived in a deterministic way. The default algorithm in SOMO is to take its

center. The SOMO node will then be hosted by the DHT node which owns this key.

The SOMO KBT starts out with only one DHT node which will host a SOMO node

responsible for the whole ID-space. As soon as a function periodically executed by each

SOMO node detects that the ID range, for which its hosting DHT node is responsible, is

smaller than the range it feels responsible for, it will assume that new DHT nodes have

joined and spawn new SOMO nodes for them. Thus the tree will grow. The root node will

remain responsible for the whole space on level 0 but in lower levels there might be other

DHT nodes responsible for certain parts, depending on their location in the ID-space. This

scheme does almost, but not exactly, resemble my description of a tie-breaking scheme,

with a static algorithm set to the center of the range.

This approach has the disadvantage that it might not react to membership changes as

fast as a normal KBT algorithm would.

To gather system metadata each SOMO node will periodically collect reports from its

children. If it is a leaf it will simply request the data from its hosting DHT node. Once the

aggregate arrives at the root, it is trickled down towards the leafs again.

SOMO can be used for a variety of purposes. It is interesting in its novel approach of

layering another abstraction on top of a DHT, which allows it to be somewhat independent

of the DHT and have a much simpler design.
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Summary

Aggregation overlays are the closest ancestors to what I set out to do. Astrolabe is more

a D-DBMS than an aggregation overlay but allows the easy installation of aggregation

functions which is why I put it in this section. It uses a gossip-style protocol which is the

oldest and most ineffective approach by modern standards.

The available information about Willow is too sparse to be able to even tell if it could

be used as a monitoring system, and even less so, how. SDIMS seems to be suitable for this

purpose, but still assumes certain attributes about the data that an application needs to

aggregate, for example that it has a primitive type and can be aggregated by a function

from a small set of prefix functions. SOMO is a much more broader toolkit that can be used

to store basically anything in a DHT that can be expressed by reference-types.

2.6.4 Sensor Networks

Sensor Networks are designed to provide a “surveilance network” built out of commonly

small, unmanaged, radio-connected nodes. The nodes have to be able to adapt to an

unknown (possibly hostile) territory, organize themselves in a fashion that allows routing

and answer queries about or monitor the state of their environment and trigger an action

on the occurrence of a specific condition. This section introduces the two most complete

research projects in this field.

IRISNet

The Internet-scale Resource-Intensive Sensor Network Services [27] project at Intel Re-

search is one of the many projects under the hood of IRIS [34]. It is closer to a Sensor

Network than the other systems in this survey, which are more comparable to traditional

monitoring systems. Prior research of Sensor Networks [2, 21, 25, 33] has primarily fo-

cused on the severe resource constraints such systems traditionally faced. IrisNet broadens

the definition to include richer sensors, such as internet-connected, powerful, commodity
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PCs. It provides software infrastructure for deploying and maintaining very large (possibly-

planetary-scale) Sensor Networks adhering to this new definition.

IrisNet is a 2-tier architecture. It decouples the agents that access the actual sensor

from a database for those readings. Agents that export a generic interface for accessing

sensors are called Sensing Agents (SAs). Nodes that make up the distributed database

that stores the service specific data are called Organizing Agents (OAs). Each OA only

participates in a single sensing service. However, a single machine can run multiple OAs.

IrisNet’s authors chose eXtensible Markup Language (XML) for representing data because

it has the advantage of self-describing tags, thus carrying the necessary metadata around

in every tuple. Queries are represented in XQuery because it is the most widely adopted

query language for XML data.

Some definitions of P2P demand that a system be called P2P only if it has an address-

scheme independent from DNS. According to this definition, IrisNet (as well as Astrolabe)

is not P2P since its routing scheme relies on DNS. It names its nodes according to their

physical location in terms of the real world. Each OA registers the names of all the SAs

that it is responsible for with DNS. Thus it achieves a certain level of flexibility because

node ownership remapping is easy, but, on the other hand, is dependent on a working DNS

subsystem.

Routing queries to the least common ancestor OA of the queried data is not hard because

that name is findable by just looking in the XML hierarchy. The OA that owns this part of

the name space can then be found by a simple DNS lookup. If that OA cannot answer all

parts of the query, it might send sub-queries to other OAs lower in the XML hierarchy. For

parts they can answer, OAs also use partially matching cached results. If this is unwanted,

a query can specify freshness constraints.

IrisNet lets services upload and execute pieces of code that filter sensor readings dy-

namically, directly to the SAs. This is called a senselet. Processed sensor readings are sent

by the SA to any nearby OA, which will route it to the OA that actually owns this SA. By

decoupling the SA from the OA, “mobile” sensors are made possible.

28



IrisNet’s contributions lie more in the field of Sensor Networks, but there is an applica-

tion of IrisNet to System Monitoring. IrisLog runs an SA on each PlanetLab node which

uses Ganglia Sensors to collect 30 different performance metrics. Users can issue queries

for particular metrics or fully-fledged XPath queries using a web-based form. The IrisLog

XML schema describes which metrics should be gathered and to which OA they have to be

sent. This is why IrisNet is included here.

TAG

The Tiny AGgregation service for ad-hoc sensor networks [25], developed at UC Berkeley,

is an aggregation system for data from small wireless sensors. It draws a lot of inspiration

from Cougar [2] which argues towards sensor database systems. These so called motes,

also developed at UC Berkeley, come equipped with a radio, a CPU, some memory, a small

battery pack and a set of sensors. Their Operating System (OS), called TinyOS, provides a

set of primitives to essentially build an ad-hoc P2P network for locating sensors and routing

data. The mote wireless networks have some very specific properties that distinguish it from

other systems in this survey. A radio network is a broadcast medium, meaning that every

mote in range sees a message. Consequently messages destined for nodes not in range have

to be relayed.

TAG builds a routing tree through flooding: The root node wishing to build an aggre-

gation tree broadcasts a message with the level set to 0. Each node that has not seen this

message before notes the sender ID as its parent, changes the level to 1 and re-broadcasts

it. These trees are kept in soft-state, thus the root has to re-broadcast the building message

every so often if it wishes to keep the tree alive.

The sensor DB in TAG can be thought of as a single, relational, append-only DB like the

one used by Cougar [2]. Queries are formulated using SQL, enriched by one more keyword,

EPOCH. The parameter DURATION to the keyword EPOCH, the only one that is supported so

far, specifies the time (in seconds) a mote has to wait before aggregating and transmitting

each successive sample.
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Stream semantics differ from normal relational semantics in the fact that they produce

a stream of values instead of a single aggregate. A tuple in this semantic consists of a

< group id, val > pair per group. Each group is timestamped and all the values used to

compute the aggregate satisfy timestamp < time of sample < timestamp+DURATION .

Aggregation in TAG works similarly to the other P2P systems that use trees in this

survey: The query is disseminated down the tree in a distribution phase and then aggregated

up the tree in a collection phase. The query has a specific timeout in the form of the EPOCH

keyword. Consequently, the root has to produce an answer before the next epoch begins.

It tells its children when it expects an answer and powers down for the remaining time.

The direct children will then subdivide this time range and tell their children to answer

before the end of their timeout, respectively.

For computing the aggregates internally that are specified externally using SQL, TAG

makes use of techniques that are well-known from shared-nothing parallel query processing

environments [43]. These environments also require the coordination of a large number

of independent nodes to calculate aggregates. They work by decomposing an aggregate

function into three smaller ones:

• an initializer i,

• a merging function f , and

• an evaluator e.

i run on each node will emit a multi-valued (i.e. a vector) partial-state record 〈x〉. f is

applied to two distinct partial-state records and has the general structure 〈z〉 = f(〈x〉, 〈y〉),

where 〈x〉 and 〈y〉 are two partial state records from different nodes. Finally, e is run on

the last partial-state record output from f if it needs to be post-processed to produce an

answer.

Another unique contribution of this paper is the classification of aggregate functions by

four dimensions:
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1. Duplicate sensitive vs. insensitive Describes a functions’ robustness against duplicate

readings from one sensor.

2. Exemplary vs. summary Exemplary functions return some representative subset of

all readings, whereas summary functions perform some operation on all values.

3. Monotonic - Describes an aggregate function whose result is either smaller or bigger

than both its inputs.

4. State - Assesses how much data an intermediate tuple has to contain in order to be

evaluated correctly.

What makes this project interesting is not its description of TAG, because I think that

its tree building and routing primitives are inferior to others presented in this survey, but

its groundwork that is important in many ways to aggregation systems. The addition of

an EPOCH concept to SQL is one such example, while the classification of aggregation

functions along four axis is another.

Summary

Whereas both aggregation overlays and distributed DBMS can be used alongside an ap-

plication that is to be monitored, sensor networks are designed to run by themselves and

commonly focus on heavily resource-restricted hardware platforms. While IrisNet is an

exception to this, it has no extension mechanism and can only be used to collect Ganglia

data through IrisLog. The TAG paper is valuable because of its contribution but otherwise

not usable as a monitoring framework.
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2.6.5 Conclusion

Out of the systems presented in this section that are deployed on PlanetLab, only PIER

and SDIMS (and maybe Sophia) are suited to do application level monitoring, albeit they

are not making it easy. Both PIER and SDIMS were not designed with users of PlanetLab in

mind. PIER was designed to be as close to a local relational query engine as a distributed

one could be by giving up some of the ACID (atomicity, consistency, independence and

durability) constraints. Its main purpose is therefore not aggregation, nor application-level

monitoring. SDIMS is meant to be an aggregating overlay for system meta-data. As such

it can be used for application-level monitoring by explicitly inserting a process’ logs into

the system and setting up an aggregation function to reduce the amount of data. Neither

of these two systems (PIER and SDIMS) can be modified easily to execute user specified

programs to make aggregation simple. Sophia is not running on PlanetLab any more and

generally seems an unusual choice for system monitoring.

None of these choices currently concern themselves with security.

D-DBMS solve item 1 and some of them even solve item 2 of the problem. Aggregation

systems obviously solve item 1, and Sensor Networks solve the third section of the problem

(item 3).
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Chapter 3

Approach

This chapter describes my approach from a high level, whereas the next chapter details

the implementation and design and gives a short usage manual. My approach is structured

after the problem delineation, as given in section 1.2.

3.1 General

To solve the problem of distributed collection, selection and aggregation of logged statistics

of a P2P application the three problems given in section 1.2 have to be solved. To cope with

the amount of data that has to be collected, it is unavoidable to reduce the data before it

arrives at its destination to prevent saturation of resources.

To leave as much power in the hand of the user, I follow the approach of MapReduce

and let the user specify his or her own collection, aggregation and evaluation functions.

This can only work properly in an aggregation tree, however, if these operators implement

associative functions, i.e. prefix functions.

For non-prefix functions, like for example subtraction, this will alter the result. PWHN

copes with churn by using the data-structure we invented. It uses a Key-based MapReduce

(KMR) to effectively and efficiently distribute the query to all nodes and uses the same tree

for aggregation.
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3.2 Distributed selection

As described earlier, centralized data collection is frequently unsuitable for monitoring the

system state. Thus, as much processing of the data as possible, especially data selection,

should be pushed out into the network towards the sources.

The question that remains is how to do this without assumptions about the data’s

structure a-priori. Traditional languages that are written for this, such as SQL, assume that

the data fits into a relational schema. Others, that are used but not written specifically for

data selection, like Prolog, are complicated and have a steep learning curve.

I decided to take an approach that leaves the choice of the language to the user. The

operators in PWHN that are responsible for selection, aggregation and evaluation have the

only restriction of being runnable programs. Thus, they can be programmed in the user’s

favorite programming, scripting, querying or logic language.

In this case this does not pose a security threat because the researcher using PlanetLab

has complete control over his slice anyway and there is no point in uploading harmful code.

There is one caveat: Since client-server communication is done without any encryption

or security at the moment, anyone could connect to a running pwhn-server (provided he

knows the right port number) and upload executable code. This should be addressed in

future versions by introducing certificates and encryption.

3.3 Distributed aggregation

For the same reason as above, as much reduction of the data as possible should be pushed

out into the network. We make the simplifying assumption that most of the operators are

going to implement prefix operations, and thus can easily be distributed.

PWHN combines the strengths of both MapReduce (see section 2.2) and the ideas of

shared-nothing, parallel query-processing environments (and thus such systems as TAG, cf.

2.6.4; and SDIMS, cf. 2.6.3).
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It incorporates the strength of MapReduce by realizing that by restricting its operations

to associative (i.e. prefix) functions, it does not lose much expressiveness; but on the other

hand, gains an important advantage, that its operators can be pushed out into the network.

While MapReduce requires its operators to map into and then do the reduction in a domain-

reduced tuple-space (that is, each tuple has an explicit key), my system supports but does

not require this.

It learns from the ideas of systems such as TAG by splitting the aggregation into three

smaller, distinct operators; initialize, update, and evaluate. It has an advantage over those

systems, in that it does not restrict those operators in any way (e.g. to SQL), besides the

fact that they need to be executable programs.

3.4 Churn

A system that has to work in a P2P environment has to be able to cope with rapidly

changing membership. It has to be able to heal its structures, such as the aggregation

tree, when members leave; and adapt them, when new members join. It needs to reliably

distribute the data (i.e. the programs) necessary for a query to all participants, even if the

set of those participants changes during or after the initial distribution phase.

DHTs that are designed to find data (keys in this case), despite high churn, can be

used to amend the problem of knowing which participants have left and which have joined.

Our approach, however, does not attempt to adapt a statically built aggregation tree to

a changing membership, but instead rebuilds the tree on every query. The underlying

assumption is that the rate of churn is above the point that marks the equilibrium between

healing and rebuilding the tree.

Therefore, our approach leverages DHTs to build a self-healing aggregation tree upon

dynamic networks. I looked at several related work in this area and designed a data-

structure that combines the strengths of both FTTs and KBT but tries to avoid some of

their weaknesses. FTTs might introduce a hot-spot at the root node because they do not
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try to build an aggregation tree that is structured according to the current set of active

nodes, but instead use the DHT to route; whereas KBTs only construct one global tree at

start time and thus have the need for complicated healing algorithms. Moreover, a high

amount of requests might also overload the global root.

After the initial distribution phase, my system transmits only hashes instead of the

actual content, to be able to let new members detect that some content has changed.
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Chapter 4

Implementation and design details

4.1 Design details

4.1.1 Data Structure

We seek a data-structure that combines the FTTs load-balancing feature with the determisn

of a KBT. Since the FTT is defined by the entries of all participating nodes’ fingertables,

it is not predictable and may fluctuate frequently. This stems from the fact that the DHT

needs some flexibility to be able to keep routing in the presence of churn.

A DHTs flexibility in routing means that it can pick the next hop from all those that

have one more matching prefix bit. Thus the length of the prefix is inversely proportional

to the number of candidate nodes. Consequently, the length of the suffix (the remaining

bits after the prefix) is directly proportional to the number of eligible nodes. For k suffix

bits the number of candidates is 2k.

This leads to a solution which consists of a KBT rooted at a particular key. Since the

number of candidates is directly proportional to the length of the suffix and we would like

this number to be exactly one, we need to reduce the length of the suffix. This can be done

by “fixing” it to the current node’s suffix.

For example, in a “normal” DHT, a node with ID= 000 that wants to route a message

to Key(111) has four choices for the next hop, those that match 1XX. Fixing the prefix

and suffix to those of the current nodes, while still flipping the next bit (i.e. adding one

more prefix bit) essentially reduces the number of routing candidates to one. Continuing

the example, node(000) will have to route the message to node(100) because that corrects
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the next bit of the (currently empty) prefix and keeps the same suffix. This ensures that

the resulting tree will be balanced and have a strong upper bound on the branching-factor

of len(ID) for a fully populated ID-space. This data-structure bears strong similarity to

MapReduce, albeit keyed with a certain ID, thus I call it Key-based MapReduce (KMR).

A KMR is a subset of a KBT because a KMR is fully described by the set of nodes and

the root key, whereas the KBT can have any permutation of the nodes with the constraint

that all nodes in a subtree have the same bit at the respective level of the subtree’s root.

For n levels a = 1 · 2n +2 · 2n−1 + · · ·+2 · 22 +2 · 21 different KBTs are possible. Specifically,

this means that a KBT with a set of nodes has a chance of p = 1
a

to look like the KMR with

the same set of nodes.

111 101 100 000

111 101 001

111 011

111

1 0

1 0 0

1 1 0 0

011

011

1

1

110

0

001

1

010

0

Figure 4.1:
Example of a KMR (the flipped bit is highlighted at each level) for a
3-bit wide ID-Space, all nodes present, for Key(111)

(For homogeneity I will always represent KMRs such that the root node is the left child, thus the

right child always has the corresponding bit of the root flipped. This structure is sometimes

called a Left-Tree.)

39



101 111 110 010

101 111 011

101 001

101

1 0

0 1 1

1 1 0 0

001

001

0

1

100

0

011

1

000

0

0
11

001

0 0
011

Figure 4.2: Explanation of the dissemination phase of a KMR rooted at Key(101)

The long way down

In the dissemination phase, a message has to be routed from the root of the tree to all leafs.

It is done recursively. This is particularly easy due to the characteristic of a KMR that each

internal node is its own parent if it has the same suffix as the root at the corresponding level,

which in my representations will always be the left child. Each parent (root of a subtree)

will be its own left child all the way down, and thus only needs to send the message to each

of its (right) siblings. Since the length in bits of the suffix of a node will determine its level

in the tree, this is the number of messages it needs to send. Thus, every node sends exactly

P messages, where P =len(suffix), to other nodes according to the following algorithm.

Listing 4.1: Algorithm for the dissemination phase of a KMR
1 f o r (k = len ( s u f f i x ) ; k >= 0; k−−)

route ( OwnID ˆ (1 << k ) ) ;

The algorithm starts at the node with the longest matching prefix and flip bits in the

prefix “from the front,” thus doing the opposite from the aggregation phase: subtracting

bits of the matching suffix. The algorithm sends as many messages as there are bits in the
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prefix.

Unfortunately, most DHTs will not have a fully populated ID-space. To prevent nodes

from trying to route to a large number of non-existent nodes, which in a normal DHT

would end up storing the same value over and over under different keys at a few nodes, an

application building a KMR on a DHT would try to get access to the underlying fingertable

and KBR Layer. There are two ways to solve this dilemma.

First, adding a single function to the DHTs interface allows an application to build a

KMR on it. Since the application needs to find nodes without actually storing data on

them, which would be the (unwanted) side-effect of a put, the function takes a key and

returns the closest node to that key. Thus, it is called FIND NODE.

After the parent of a subtree has determined the closest node to one of its children it

was looking for, it just sends the message to that node instead (let us call that node A).

This node has to assume the role of its non-existent parent and resends the message to

all the children that its parent would have sent it to. Fortunately, due to the fact that

the node, by virtue of getting this message for its parent, now knows that it is the closest

ancestor to its parent, it is able to discern which of its siblings cannot be there. These

are all the nodes who would have been closer to the original parent. Thus, A only has to

resend the message to all of the direct children (of its parent) whose IDs are further from

their parent’s ID. In the representation I use in this paper, these happen to be all of A’s

parent’s children to A’s right.

The aforementioned leads to the second solution. If the application has access to the

KBR and has the ability to route messages without side-effects it does not need FIND NODE.

All the messages that the node tries to send to non-existent nodes will either return to the

sender or the next closest node to its right. An application keeps track of received messages

and disregards messages that it had already seen. The node that receives messages destined

for a non-existent node not send by itself knows that it has to assume its parents role and

continues as outlined above. Should a node get the message that it itself has sent to one
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of its children, it can immediately deduce that there can be no more nodes in that subtree

because all nodes in a subtree share the characteristic of having the same next bit; thus

any of these nodes would have been closer to any other.

A KMR only looks binary in a certain representation, but on the other hand, it provides

a strong upper-bound on its arity for each node, whereas KBTs/FTTs do not. This arity is

the width of the ID-space - 1 for the root of the tree and decreases by 1 at each level. The

first approach previously outlined has the ability to find existent nodes and will thus only

send necessary messages. The second approach has to blindly send the maximum number

of messages, many of which will end up at the same node. As soon as the next node down

the chain determines all those nodes that cannot be there, this cuts down the number of

messages that need to be sent. It still has to send messages to all of its parent’s children

that are to its right.

The stony way up

001 011 010 110

001 011 111

001 101

001

0 1

0 1 1

1 1 0 0

101

101

0

1

000

0

111

1

100

0

1
01

001

1 1
101

Figure 4.3: Graphic explanation of the aggregation phase of a KMR rooted at Key(001)
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The aggregation phase works exactly opposite to the dissemination phase. To work the

way up the tree, every node only needs to send one message but has to wait for as many

messages as it sent in the dissemination phase to arrive. An estimate of the number of

messages can be made using the global number of nodes as a statistical hint, if that number

is unknown using the distance to the root as a rough estimate, or by using the fingertable.

Then, each node sends one message to its immediate parent in the tree according to the

following algorithm.

Listing 4.2: Algorithm for the aggregation phase of a KMR
route ( OwnID ˆ (1 << l en ( s u f f i x ) ) ;

In a KMR routing “up” the tree is done by fixing both pre- and suffix and flipping bits

in the suffix “from the rear,” i.e. adding bits to the front of the matching suffix.

Since, as already mentioned above, the ID-space will most likely not be fully populated,

this algorithm will again end up trying to route a lot of messages to non-existent nodes.

This can be avoided in the following way.

A naive way is to remember where the message in the dissemination phase came from

and just assume that the parent is still good while aggregating.

4.1.2 Systems leveraged

FreePastry

FreePastry [9] is an open-source implementation of the Pastry DHT [41] in Java. Pastry is

very similar to the original Chord with added locality and more freedom in choosing its

fingers. Its routing can be seen as passing a message around a circular ID-space (a ring)

consisting of 160-bit IDs. Nodes store pointers to specific locations on the ring relative to

their own, commonly half a revolution away, a quarter revolution away and so on or their

immediate successors if those nodes do not exist. Pastry chooses as its fingers the same set

of nodes that Kademlia DHTs choose from; all those that match the next bit flipped.

I choose to implement two trees on FreePastry because it is open-source and easy to use.
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Figure 4.4:
Summary of the both the aggregation phase and the dissemination
phase of a KMR rooted at Key(101)

Furthermore, the fact that it exports the common Application Programming Interface (API)

[6] comes in very handy when implementing these types of trees.

For a more extensive specification of FreePastry please refer to Appendix C.

4.2 Implementation

4.2.1 PWHN

PWHN is the name of my implementation of a MapReduce-like system for PlanetLab.

System requirements

To run PWHN the client and server need to be able to run java programs. The required

java version is at least 1.4.2. All required java libraries are included in the distribution.
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For conveniently starting and stopping the server using the client Graphical User Interface

(GUI), sshd is required; to be able to use the automatic syncing feature if a node’s files are

out of date, rsync needs to be installed (no running rsync server is required). If execution

of the user supplied scripts need a runtime environment or script interpreter, obviously

this needs to be installed, also. The client uses both the JFreeChart [18] and jgraph [19]

libraries for rendering the plots and graphs. Both are included in the distribution as binary

libraries. Their respective source codes can be downloaded from the project websites.

Licenses

Both JFreeChart and jgraph are released under the Lesser General Public License (LGPL)

version 2.1.

System description

Like other systems, for example SDIMS (2.6.3) and TAG (2.6.4), PWHN splits the aggregation

into three smaller operators:

1. Init,

2. Update, and

3. Eval.

In contrast to other systems, these can be executable programs such as scripts with a

working shebang. Only the Initializer is really necessary. In case the Aggregator is not

given, the results are concatenated and if no Evaluator is given, the current result set is

returned.

Data is passed from stage to stage in the following way. The Initializer writes a byte

stream to its stdout. The Aggregator is called and the outputs from two distinct Init runs

are given to it on its stdin. The data of each run starts with its length in bytes as an

ASCII string on a line by itself and is followed by a newline. This would be an example of

a valid input to the Aggregator.
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11\n

(1,3.0,2.0)\n

12\n

(1,1.65,0.8)\n

The Aggregator is expected to deliver the aggregated form of its two inputs on stdout.

The Evaluator should expect the last output of the Aggregator, or all outputs of the Init

concatenated on its stdin and print its output to stdout.

PWHN scans all outputs from Init and will discard empty strings, which means it will

not call the Aggregator of Evaluator with an empty input. If the scripts print and accept

their in- and outputs with a trailing newline, however, is totally up to the user; PWHN does

not make any assumptions about the form of the data. If, for example, the Initializer uses

the python print command for output, care has to be taken in the Aggregator to delete

the trailing newline using the rstrip() function.

To test if this might work quickly and efficiently, I implemented two different versions.

Script Version The first version is centralized and is written in python. Centralized,

because it does not use a tree. Instead, it connects to all hosts using Secure SHell (SSH),

remotely executing the requested Init file. After they all have terminated, it executes the

Aggregator and Evaluator locally, if given.

All necessary options are supplied through the command line. It will do two things:

rsync the files with the given set of IPs and then execute the Init file remotely and the others

locally. It allows specifying a directory rather than single files which will get rsynced. If a

directory was specified all three files have to be in that directory. The commands (rsync

and SSH) are executed on all servers in parallel using vxargs, which is a script written

in python specifically to execute one command on many PlanetLab nodes. Thus, a lot

of the command-line arguments of PWHN are handed directly to vxargs. For a complete

description of all arguments and some screenshots see Appendix E.
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Java Version The Java version consists of two parts:

1. The tree surrogate that runs on my PlanetLab slice forms a FreePastry ring, and

2. the local client tool that connects to the tree requests a query and presents the results

graphically.

The client allows the user to you specify all necessary options in a nice GUI and is able

to run the centralized PWHN script, its own “native” Java implementation of the script

using threads instead of vxargs, or the three different tree versions. The tree versions use

the first given IP as a entry-point to connect to the FreePastry ring.

The GUI is described in the next section, whereas the server and tree architecture are

outlined in the following two sections.

4.2.2 Client GUI

A superset of this description is available at [32].

The GUI mirrors the design of the script by letting the user select the three executa-

bles/scripts. The first tab selects the IPs to work with, a username for SSH, the method

(script, native, or one of the three tree types), and a name for the run. The last tab displays

the results in various formats. When started it looks like Figure 4.5.

The “File” menu allows the user to store and later reload a full project including all

files, names, and runs.

The “Runs” menu allows one to delete selected runs, save them as plain text files and

change the run with the category.

The “Chart” menu allows one to reset the zoom on the chart and save the chart/graph

as an image.

The “Graph” menu allows one to zoom the graph in and out.

The “PLMR-Server” menu allows one to sync the files needed for the PWHN server,

start and stop it. It operates on the currently selected list of IPs. The start command
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Figure 4.5: The client GUI after startup

starts PWHN on the first IP first, waits five seconds and then starts it on all the other IPs

given, supplying them with the IP of the first node to connect to.

Note that PlanetLab-MapReduce (PLMR) was an earlier name for this project and has

been discontinued in favor of PWHN.

Since all four tabs for selecting files look very much like the IP/Servers tab, I am

going to explain them all at once. Instead of selecting three distinct files for the phases

PWHN supports 3-in-1 files which are similar to unix startup-scripts and contain all phases

in one file. They expect to be told their role on the commandline, by supplying one of
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[gen,agg,eval].

All four tabs display the contents of the currently selected file, let the user change them,

or accept typing in new content which gets saved as a new file suffixed with the current

UNIX-timestamp in milliseconds. The box above the text filed will always reflect the

current filename. The IP tab also allows entering full Uniform Resource Locators (URLs)

as filenames.

If the filename field is empty, a click on the adjacent button opens a new file chooser

dialog to select a filename, otherwise it will try to open the entered file or fetch the URL.

IP/Servers tab

In this tab the user specifies a list of servers for the flat algorithms. The tree versions

technically do not need this list of IPs any more to execute a query, but it is nice-to-have to

be able to start the server on all the nodes through the GUI. The current implementation

sends this list around with every query to be able to select on which nodes to execute a

query, but this is not strictly necessary and could be easily changed.

The “sync” button executes an rsync with the current set of servers to transfer either

the chosen directory or both the Init and Agg files. The rsync can use either the script or

the native implementation. A BuildMessage (cf. subsection 4.3.3) for building a tree can

only accommodate transporting single files, and thus can only execute non-synced runs if

no directory has been selected. Warnings are issued if the user attempts otherwise.

Once a sync has been executed and none of the files or the IP list have changed, the

GUI considers itself in sync with this set of IPs. In synced state, a flat or native run can be

started and tree runs will include hashes rather than the contents of the files itself. In case

a directory is selected, it is hashed recursively. Hashing is done with the help of a python

script called hasher.py (see subsection 4.3.1).
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Result tab

The result tab displays the results of all runs in various formats. In its pristine state it

looks like Figure 4.6.

Figure 4.6: The client GUI displaying the result tab

The combo-box at the top lets the user select one of 10 different ways of displaying the

current result or one of three ways of displaying the extra data that this run is annotated

with (information about the tree). At the bottom, information about the runs is displayed

including a name if it had one or just the time of the run, the type, the runtime and the

number of jobs returned vs. number of jobs requested. It also allows hiding of runs.

Three main type of result sets are supported for plotting, all of which have to be tuples
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enclosed in “().” They are:

• (Name〈string〉, Y − V al〈real〉) which can be plotted as a bar chart, a Line-, a Dot-

and an Area-chart. Figure 4.7 is an example of a Bar-Chart.

Figure 4.7: The result tab showing a Bar-Chart

• (X − V al〈real〉, Y − V al〈real〉) which can be plotted as a bar chart, a Line-, a Dot-

and an Area-chart. Figure 4.8 is an example of a Line-Chart.

• (X − V al〈real〉, Y − V al〈real〉, Z − V al〈real〉) can be plotted as bubble chart, in

which the size of the bubble is proportional to the z-value, or as color-chart where

the color represents the z-value, ranging from green to red. Figure 4.9 is an example

of a Bubble-Chart.
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Figure 4.8: The result tab showing a Line-Chart

The chart preferences, which are accessible through the button with the same name,

allow setting all the names and captions of the chart, the ranges for both the x- and y-axis,

as well as a background picture.

4.2.3 Path Info

See 4.3.3. The optionally collectable path-infos are used to calculate some general statistics

about a run, as well as to draw the paths on a 2d-world map and to visualize the shape of

the tree. The results tab also allows to look at them in plain text, which simply prints all

the information in the root PathInfo class and then its children recursively.

The general stats, which are also calculated for native runs, contain the following infor-
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Figure 4.9: The result tab showing a Bubble-Chart

mation (stats from native run of subsection 5.3.1)

’Oct 1; 2006 2:50:00 PM’:

Time: 138681

Avg. ms/hop: 602.9609

Client bytes in: 3673

% answered/all asked: 100.0%

Avg. bytes/link: 15.969565

Avg. bytes/msec: 0.001758027

Avg. link delay: 9083.8

Avg. fan-in: 230
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Avg. path length: 1

(8.033870,9.247825)

The information stored within the PathInfo class can be displayed in textual form as shown

in Figure 4.10.

Figure 4.10: Result tab showing the PathInfo in textual form

Figure 4.11 is an example of the paths drawn on a world-map. Note that the nodes in

the upper left corner have no coordinate information associated with them yet.

The tree can be drawn in its actual form as shown in Figure 4.12, which should be used
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Figure 4.11: Result tab showing the PathInfo drawn on a 2d-world map

with FTTs.

4.2.4 Sample experiment

This sample shows how to run an experiment using the first set of scripts from subsec-

tion 5.3.1 on a random set of 10 nodes using a KMR.

The scripts calculate the average load over all servers, and the load’s standard deviation.

Let us assume that the file nodes10.txt contains the following lines:

planet2.prakinf.tu-ilmenau.de
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Figure 4.12:
Result tab showing the PathInfo drawn as a tree showing the aggrega-
tion tree’s structure

planet2.ottawa.canet4.nodes.planet-lab.org

planet2.scs.stanford.edu

planet2.toronto.canet4.nodes.planet-lab.org

planet3.cs.huji.ac.il

planet3.pittsburgh.intel-research.net

planet4.berkeley.intel-research.net

planet4.cs.huji.ac.il

planet5.berkeley.intel-research.net

planet6.berkeley.intel-research.net

Start a shell and make sure that it is able to log into the machines remotely without
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asking for a password. This can be achieved by using public-key cryptography to log into

the machines remotely using SSH. If the private key is secured with a passphrase, which is

advisable, an ssh-agent needs to be running to supply the key to SSH. If it is not running,

start it by typing:

$ eval ‘ssh-agent’

Agent pid 259

$ ssh-add

Enter passphrase for /Users/derDoc/.ssh/id_rsa:

Identity added: /Users/derDoc/.ssh/id_rsa (/Users/derDoc/.ssh/id_rsa)

If asked for the passphrase, enter it, and the key will be unlocked for use in this shell.

Now, the PWHN client can be started in this shell, because all subshells can also access

the environment variable which names the ssh-agent pid. To start PWHN just type:

$ java -jar PLMR-1.0.jar

In the IP/servers tab select a list of IPs that you want to have the server started on,

enter the username for ssh-logins and select “Sync server files” from the menu named

“PLMR-Server.” In the opening dialog name the folder that contains your server files, it

should be the contents of the plmr-server.zip archive of the distribution. After the sync

has finished select the menu entry named “Start server” and select the start-plmr.sh script

in the folder that has just been synced. The first server in the IP list will be started first

and will be the one subsequent join requests will be directed at, so a reasonably lightly

loaded and (for best results) close (in terms of Round Trip Time (RTT) space) node should

be chosen.

Now go to the Gen tab and select the script or program that executes your initializer.

If you have a 3-in-1 file click the checkbox. In our example we have three separate python

scripts, so they are selected in the appropriate tabs. Since a tree run can only transport the

Initializer and Aggregator as separate files, you cannot select a folder. If you try otherwise

you will be warned, and have the choice to sync, ignore or cancel. If you sync before using
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native sync, you can safely ignore the warning and execute anyway, since the files exist

on the nodes already. After all the files are selected and the server is started, you can

click on Run! and the query message (BuildMessage class) will be built and send to the

first node to start the build process and execute the query on it. In this case the first

server was “planet2.prakinf.tu-ilmenau.de”, so a BuildMessage containing the Initializer

and Aggregator as well as their names was built and send to it. This message is parsed

and processed by this server, then sent down the tree. After forwarding the message, the

node executes the initializer, stores the result, and waits for more results to arrive. Every

BuildMessage includes a timeout which specifies the time in milliseconds that a node will

wait for results to arrive. When they do, the Aggregator is executed. When the timeout

fires, a SendResMessage is send to the local node, and it builts the ResultMessage and

sends it to its parent.

When the query is finished (arrived at the root), a message (ResultMessage class) is be

sent back to the client, containing the results you requested and some more information

about the tree. Go to the result tab to look at the result. It contains some extended

information about the the run, as well as the result itself.

KMR; ’Nov 27; 2006 11:52:43 PM’:

Time: 122896

Avg. ms/hop: 40965.332

Client bytes in: 24

% answered/all asked: 30.0%

% answered/ring size: 60.0%

Avg. bytes/link: 18.666666

Avg. bytes/msec: 0.0

Avg. link delay: 96.333336

Avg. fan-in: 2.0

Avg. path length: 1.0
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(3.223333,2.082458)

Note that due to reasons which are beyond my understanding only a third of the nodes

join the ring and thus send an answer. I chose the timeout of 120 seconds to give each level

of the tree enough time (8 seconds) to produce an answer which still is not enough for highly

loaded nodes. This leaves time for 15 levels in the tree which is more than enough even

for large networks. % Answered vs. all asked is the ration of the number of servers in the

list and the number of received results. % Answered vs. ring size is the ratio of the result

count versus ring-size as perceived by the root node. This “perceived ring-size” simply

increments each time a new node joins the neighborhood set and does not decrement. This

is underestimating the real size because not all nodes join the neighborhood even if they

all join at the bootstrap node.

4.2.5 Application to Fern

Fern is a distributed publish-subscribe system for security credentials which are referenced

by hashes. It is implemented using a trie in which leaves are actual credentials and internal

nodes are just pointers along the way. Internal nodes store both a link and the hash of both

child nodes. Fern uses plain files to store all nodes in the trie and publishes them using

Coral, so that getting a credential simply comprises requesting some files through Coral.

The current version is implemented in python, it consists of both a server that can publish

and revoke certificates and maintains the repository; and a client that subscribes to some

random subset of all available certificates. It is being developed by Eric Freudenthal and

David Herrera at UTEP.

Each client logs a number of interesting statistics, one of them being the average time in

seconds it takes for the trie to stabilize, i.e. the time the trie is not in sync with the server

after a root certificate change. This is expressed as the number of events that occurred

since the last log time and the times it took for certain thresholds of nodes in the trie to

be updated (for a histogram); currently these thresholds are: 0.5, 0.75, 0.8, 0.9, 0.95, 0.98,
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0.99.

The fern log format is designed to be easily parsable with python and looks like this:

[’963896C357B6EC33F995E6C26D2DBFBDEE7C212F-

0000000000000000000000000000000000000000-142-0’, 55, 55, 0, [(0.5,

10.809647083282471, 1), (0.75, 24.35219407081604, 1), (0.80000000000000004,

26.243300914764404, 1), (0.90000000000000002, 29.295248031616211, 1),

(0.94999999999999996, 31.379647970199585, 1), (0.97999999999999998,

38.444088935852051, 1), (0.999, 42.49633002281189, 1)]]

First is a unique name, then the following numbers since the last log period: Number of

new nodes received, number new nodes published, number missed, and then histogram

values. These are lists of “(threshold, time in secs, count for avg.).” Threshold signifies

the percentage of nodes, and time in seconds is the time it took for that percentage of the

nodes to be updated, while the count is just for averaging.

We wrote a 3-in-1 script that parses these log files, aggregates them and finally evaluates

them to produce a format that is suitable for PWHN to produce a histogram. This format is

simply a list (separated with newlines) of “(X,Y)” tuples to draw a line. This is the script.

Listing 4.3: 3-in-1 script for global-Distribution histogram in Fern
#! / usr / b in / env python

import sys , os

4 import autoDict

de f tupleSum ( l t , r t ) :

r e s u l t = [ ]

f o r l , r in z ip ( l t , r t ) :

9 r e s u l t . append ( l+r )

return r e s u l t

de f readAggInput ( ) :

#read i n pu t s

14 f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

f i r s t = sys . s td in . read ( i n t ( f ) ) . r s t r i p ( )

sys . s td in . read (1)

s = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

second = sys . s td in . read ( i n t ( s ) ) . r s t r i p ( )

19 return ( f i r s t , second )
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i f sys . argv [ 1 ] == " gen " :

names = os . l i s t d i r ( " f e r n C l i e n t L o g s / 1 4 2 / " )

fn = os . path . j o i n ( " f e r n C l i e n t L o g s / 1 4 2 / " , names [ 0 ] )

24 fn = os . path . j o i n ( fn , " g l o b a l D i s t . log " )

f = open ( fn )

l = f . r e a d l i n e s () [ −1 ]

f . c l o s e ( )

29

l = l i s t ( eva l ( l ) )

p r in t l

e l i f sys . argv [ 1 ] == " agg " :

34 dataMap = autoDict . AutoDict ( lambda x : (0 , 0 ) )

f o r input in readAggInput ( ) :

inp = eva l ( input )

name , numRcvd , numEvents , numMissed , data = inp

39 f o r f rac , time , count in data :

dataMap [ f r a c ] = tupleSum (dataMap [ f r a c ] , ( time , count ) )

outL i s t = [ ]

f o r f r a c in so r t ed (dataMap . keys ( ) ) :

44 time , count = dataMap [ f r a c ]

outL i s t . append ( ( f rac , time , count ) )

r e s u l t = [ name , numRcvd , numEvents , numMissed , outL i s t ]

p r in t s t r ( r e s u l t )

49 e l i f sys . argv [ 1 ] == " e v a l " :

name , numRcvd , numEvents , numMissed , data = eva l ( sys . s td in . r e ad l i n e ( ) . r s t r i p ( ) )

outData = [ ]

f o r f rac , sum , count in data :

p r in t ( f rac , sum / count )

After starting Fern on PlanetLab which automatically generates some events, I executed

this script on the following servers:

planetlab1.utep.edu

pl1.csl.utoronto.ca

pl1.ucs.indiana.edu

pl1.unm.edu

pl1a.pl.utsa.edu

pl2.cs.utk.edu

pl2.ucs.indiana.edu

pl2.unm.edu

plab1-itec.uni-klu.ac.at
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plab1.cs.ust.hk

Eight servers answer, producing the following output.

(0.5, 5.1013276917593817)

(0.75, 8.0900618689400812)

(0.80000000000000004, 10.013715028762817)

(0.90000000000000002, 11.617396252495903)

(0.94999999999999996, 27.510209832872665)

(0.97999999999999998, 14.874251484870911)

(0.999, 23.537552714347839

Plotted as a line the histogram looks like ref Figure 4.13.

Figure 4.13: Global Distribution Histogram in Fern for 10 nodes

I also executed this script on all 712 nodes. This is the result, and the resulting His-

togram looks like Figure 4.14.

(0.5, 6.5107764885539101)

(0.75, 10.395761886274958)
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(0.80000000000000004, 12.369233447385122)

(0.90000000000000002, 15.719600200653076)

(0.94999999999999996, 20.572705371512306)

(0.97999999999999998, 23.004060913966253)

(0.999, 27.136558944528755)

Figure 4.14: Global Distribution Histogram in Fern for all 701 nodes

Note that this curve looks a lot more like a histogram.

4.3 Architecture

The PWHN server surrogate is layered on top of FreePastry [9] (see Appendix C). FreePastry

by itself takes care of maintaining the ring, i.e. the KBR part of a DHT, and all necessary

communication links.

An application that runs on top of FreePastry’s KBR only needs to implement the

Common-API as defined in FreePastry and start a new node, supplying a bootstrap node

if necessary. As soon as it registers itself with the newly created FreePastry node, it will

get called whenever something happens and is allowed to route messages to other nodes or
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IDs. This could be a message arriving for the application, a message being forwarded by

FreePastry or a new neighbor joining.

Messages are defined in the application and are simply regular Java classes that imple-

ment the Message interface.

Listing 4.4: FreePastry Message Interface
pub l i c i n t e r f a c e Message extends S e r i a l i z a b l e {

2 pub l i c f i n a l s t a t i c byte MAX PRIORITY = 0 ;

pub l i c f i n a l s t a t i c byte HIGH PRIORITY = 5 ;

pub l i c f i n a l s t a t i c byte MEDIUM HIGH PRIORITY = 10 ;

pub l i c f i n a l s t a t i c byte MEDIUM PRIORITY = 15 ;

pub l i c f i n a l s t a t i c byte MEDIUM LOW PRIORITY = 20 ;

7 pub l i c f i n a l s t a t i c byte LOW PRIORITY = 25 ;

pub l i c byte g e tP r i o r i t y ( ) ;

}

Messages are serialized by FreePastry before being sent over the wire using the standard

Java object serializer which will preserve all non-transient fields. On every node along the

path, the application’s forward method is called with the de-serialized message. Once it

arrives at its destination it is de-serialized and the application’s deliver method is called.

PWHN uses the services offered by FreePastry in two ways:

1. In the dissemination phase to reliably spread the word to all nodes using a KMR-tree

on top of the FreePastry KBR, and

2. to send messages to other nodes, for example those containing the results in the

aggregation phase or those requesting an rsync.

4.3.1 Hasher.py

This is the code for the hasher script:

Listing 4.5: Code of hasher.py
import sys , os , sha

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

def hash i t ( pth ) :
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i f os . path . i s f i l e ( pth ) :

5 r e t = [ ]

r e t . append ( pth )

return r e t

r e t = [ ]

i f os . path . i s d i r ( pth ) :

10 f o r fn in os . l i s t d i r ( pth ) :

i f ( ( not ( fn==" . " ) ) and ( not ( fn==" .. " ) ) and ( not ( fn . endswith ( " . s h a 1 " ) ) ) ) :

r e t . extend ( hash i t ( os . path . j o i n ( pth , fn ) ) )

r e t . s o r t ( )

re turn r e t

15

de f h a s h l i s t ( l ) :

h = ’ ’

f o r f in l :

f s=open ( f , ’ r ’ ) . read ( )

20 h += sha . new( f s ) . hexd ige s t ( )

re turn sha . new(h ) . hexd ige s t ( )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f l en ( sys . argv ) < 2 :

p r in t " E r r o r :  No  f i l e  g i v e n ! "

25 sys . e x i t (1 )

hahs = 0

have sha1 = 0

c hash = 0

30 hashf = sys . argv [ 1 ]

i f ( hashf . endswith ( os . sep ) ) :

hashf , t = os . path . s p l i t ( hashf )

i f not ( os . path . e x i s t s ( hashf ) ) :

p r in t " F a l s e "

35 sys . e x i t (0 )

f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

i f ( l en ( f ) == 40 ) :

hahs = f

i f os . path . i s f i l e ( hashf+" . s h a 1 " ) :

40 h = open ( hashf+" . s h a 1 " , ’ r ’ ) . read ( ) . r s t r i p ( )

i f ( l en (h) == 40 ) :

c hash = h

have sha1 = 1

i f not ( have sha1 ) :

45 c hash = ha s h l i s t ( hash i t ( hashf ) )

open ( hashf+" . s h a 1 " , ’ w ’ ) . wr i t e ( c hash )

i f ( hahs ) :

s = " % s " % ( c hash == hahs )

sys . stdout . wr i t e ( s )

50 e l s e :

sys . stdout . wr i t e ( c hash )

Hasher.py takes only one argument which is the name of the file or directory to hash.

It creates a sorted list of all filenames given, which are all files in the directory and its

subdirectories if it were a directory, or just the given filename. Then it will iterate over

that list, replacing the filenames with the sha1-hash of their contents, and finally produce
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another hash of that string. If there is a file called < filename > .sha1 it assumes that

the file contains the previously created hash and reads it. If that file is not there, it will

re-create the hash and store it in that file.

If a hash has been given to the script by means of its stdin it will compare the produced

hash with the given one, and return either the string “True” or “False.” Since it waits for

something to arrive on stdin, at least one byte needs to be available.

4.3.2 Unified Modeling Language (UML) Diagrams

plmr-client
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Note: In the client UML-diagram I omitted all variables for better readability.

The client uses both the JFreeChart [18] and jgraph [19] libraries for rendering the plots

and graphs.

The main controlling class of the client is MainWindow which defines the window and

most of the actions that happen after user interaction. There is a helper class called

Charting which is responsible for creating and updating the charts and graphs, and is

called from MainWindow.

pwhn only is only responsible for controlling, like saving all files before starting an

experiment, and contains the static main class.

The Project class holds all information about the currently loaded and displayed project

(all filenames, results etc.) and can be serialized for permanent storage.

The jfree namespace contains three classes that I created for the XYZ (2d-world) view

of 3d data, i.e. the renderer and the data-set classes for XYZ sets. MyXYPlot implements

a Plot in which the background image zooms with the data displayed. This plot is also

used for the 2d-world display.

RunCollection holds information about the runs, such as the results, type and all in-

formation that is displayed in the table. It exports the interface necessary for the JTable

which is called myTableModel. The RunInfo class that is part of RunCollection holds all

information about one run. ColorRenderer is the component that renders the color of the

run in the table.

PIVisitor, Visitors and JGHelper are used for parsing and displaying of pathinfo infor-

mation.

Runners and its subclasses contains all the code necessary for executing and controlling

all four types of runs. It uses the CmdExecer class for execution of tasks which takes a

commandline and its stdin input as a byte array, executes the command in a subshell,

waits for it, copies the command’s stdout into a byte buffer, optionally notifies someone

and terminates.

ChartPrefs contains a window for viewing and setting all options of a chart like the
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title, axis names, axis width, background picture and zoom level.

plmr-server
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The main class of the server is called plmr srv main it just contains code to parse

the commandline and to start the FreePastry node. The class plmr srv app is the class

that implements the necessary FreePastry code to operate a node. It has all function

necessary for a FreePastry application, such as for receiving and forwarding messages and

for neighborhood-set change notifications. Moreover, this class implements most of the

routing algorithm logic and all of the query processing and management code. It uses the

Query class for representing a query, and the plmr client connection class for a connection

from a client which is responsible for serializing and deserializing the messages to and from

the client.

The CmdExecer class from the client namespace implements the necessary interfaces

for execution by the FreePastry background worker thread and is used for all computations

and aggregations.

The java classes in the “messages” namespace are used for representing the messages

that are sent over the wire and PathInfo is the container-class for the pathinfos. The class

IDHelper contains static algorithms for simple ID calculations that FreePastry either does

not implement or implements “private”.

Activity chart

Figure 4.17 shows a rough picture of the activities, messages and classes involved when the

user executes a query and it gets disseminated down the tree.

Figure 4.18 details the activities, classes and messages involved when the leafs send

their results up the tree and they get aggregated; and what happens when they arrive at

the client.

4.3.3 The Tree

The following section defines the messages sent in both phases and lists their important

fields. It explains the actions involved when a node receives either of them and details the
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PWHN client PWHN server

PWHN server PWHN server

MainWindow

go()
pwhn

Runners

run()
TreeRunner

read()
client_connection

Project

checkAndAgg()

deliver()

buildTreeHere()
checkQuery()
sendBuildMsgDown()

plmr_srv_app

Access

Call

message

FP

checkAndAgg()
checkQuery()
deliver()

buildTreeHere()

sendBuildMsgDown()

plmr_srv_app

FP

checkAndAgg()
checkQuery()
deliver()

buildTreeHere()

sendBuildMsgDown()

plmr_srv_app

FP

IDHelper

Query

exec()
CmdExecer

Initializer

exec()
CmdExecer

Initializer

exec()
CmdExecer

Initializer

Figure 4.17: Activity chart for the dissemination phase of PWHN

algorithm some more. Both of these messages are sent using FreePastry message sending

feature. All classes that implement FreePastry’s Message interface can be sent to other

nodes by calling upon FreePastry. They are serialized before being sent and deserialized

before being delivered automatically. This is done in FreePastry by using the standard

Java object serializer.
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PWHN client PWHN server

PWHN server PWHN server

updateChart()
MainWindow

update()
pwhn

Runners

run()
TreeRunner

send()
client_connection

Project

checkAndAgg()

deliver()

buildTreeHere()

sendBuildMsgDown()

plmr_srv_app

Access

Call

message

FP

checkAndAgg()

deliver()

buildTreeHere()

sendBuildMsgDown()

plmr_srv_app

FP

checkAndAgg()

deliver()

buildTreeHere()

sendBuildMsgDown()

plmr_srv_app

FP

Query

Query Query

addRun()
RunCollection

exec()
CmdExecer

Aggregator

exec()
CmdExecer

Aggregator

exec()
CmdExecer

Aggregatorexec()
CmdExecer

Evaluator

Figure 4.18: Activity chart for the aggregation phase of PWHN

Dissemination

The dissemination phase for all three types of trees uses the same algorithm, i.e. the

“dissemination” algorithm of a KMR. The respective message is called BuildMessage. It

carries information about the root of the tree, sender and receiver (in terms of FreePastry

IDs), the type requested, a list of IPs on which to run Init, and the contents of the Initializer

and Aggregator if not synced. Otherwise their hashes are present.

It also carries a ProxyFor field which gives the ID of the node for which the current
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sender is acting. This field is important in the case where a node sends the BuildMessage

in place of another, non-existent node. Then the receiver has to use this field rather than

the sender to determine his prefix. The sender still needs to be present to be able to retrace

the path of the message up the tree for aggregation.

I had to add a timeout field later, to specify the current timeout, that is the time this

node has to wait before sending an aggregated result to its parent. The first approach to

estimate the timeout by a node ID’s absolute numeric distance to the tree root did not

work as well as statically specifying a wait time for each level. A value of 80 seconds for

the root node and a delta of 4 seconds per level seems to be the best trade-off between

speed and completeness.

Once a BuildMessage arrives at a node, a Query class will be created for it, which

basically holds all necessary information about the query. The program will inspect the

filenames and save the contents as the given filename if they do not look like a hash. If they

do look like a hash it will execute hasher.py with the given hash. Should the hasher return

“False” the application sends a RequestRSyncMessage to the node where the BuildMessage

originally came from to initiate an rsync.

The PWHN client opens a connection to the first IP in the list by connecting to the

PLMR-port which was specified on start-time to each plmr-server. Then the PWHN client

sends a BuildMessage to the root node to initiate the tree building, albeit without all the

FreePastry specific fields filled in. From the fact that the FreePastry node got this message

over a client connection it knows that it is supposed to start a new tree, so it builds the

query class, sets itself root and continues to send the message down the tree.

If the PWHN-server finds its own IP in the list, it will schedule a run of the Initializer in

the dedicated FreePastry worker-thread if its copy of the file is fresh. Otherwise it will wait

for the rsync to finish, after which the Initializer will be run. Then the node will schedule

a message to let itself know that it is time to send the aggregated results up to its parent,

and proceed to send the BuildMessage down the tree. To do this the node first determines

its common prefix with its parent, and then sends one message for every bit in the suffix
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flipped. Should the message have been delivered to it because it owns the closest ID to a

non-existent one, it will send the message to all those IDs that are further away from the

non-existent one than its own and set the ProxyFor field to the original recipient. Then it

will send the BuildMessage down, according to the algorithm outlined in subsection 4.1.1.

The FreePastry routing protocol has two phases. The first phase uses the routing table

to correct digits of 4 bits at a time. When the next digit cannot be corrected any more, i.e.

there is no node that has a 4-bit longer prefix then the current node’s, FreePastry switches

to the second phase. In the second phase all IDs that share the current prefix are checked

for absolute closeness in numeric distance. The node that is numerically closest is chosen.

For numeric closeness the direction, i.e. positive or negative, does not matter. This means

that the found node is the closest in numeric distance to the target ID in either direction on

the ring. Since numeric distance is different from XOR distance, this node is not necessarily

the closest in XOR distance, which the routing algorithm from subsection 4.1.1 needs.

To accommodate for this, my implementation keeps searching all nodes in the fingertable

for the closest node in XOR distance until there is no closer node. This is done on each

node the message is delivered to by FreePastry. Once the closest node is reached, the

algorithm continues as outlined above. This approach also prohibits using the second

phase of FreePastry’s two phase routing protocol.

My code checks the fingertable for an entry before routing to a specific next bit and

only sends the message if there is an entry. This is routing in XOR space and ensures that

the first phase is used. If there is no corresponding entry in the figertable, second-phase

routing would take effect, and thus my code does not send a message at all, but uses XOR

distance checking instead. This finds the closest node in XOR space instead of in numeric

space and then sends the message directly to this node.

Note that the following two listings only show variables since functions do not get

serialized.

Listing 4.6: PWHN-server BuildMessage
pub l i c c l a s s BuildMessage implements Message {
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pub l i c t r an s i e n t s t a t i c f i n a l i n t FP FTT = 2 ;

4 pub l i c t r an s i e n t s t a t i c f i n a l i n t FP KMR = 3;

pub l i c t r an s i e n t s t a t i c f i n a l i n t CO KMR = 4;

// s e r i a l UID f o r s e r i a l i z a t i o n

s t a t i c f i n a l long ser ia lVers ionUID = 32780 l ;

9

// s t u f f f o r FreePas t ry

pub l i c Id from ;

pub l i c Id to ;

// t ype o f t r e e r e q u e s t e d

14 pub l i c i n t t r e e t yp e ;

// the roo t o f t r e e

pub l i c Id root ;

// Where t h e msg shou l d have been coming from .

pub l i c Id senderProxyFor ;

19

// the unique ID o f t h i s query per root ,

// used to i d e n t i f y t h e query a t each node

// t h i s i s t h e key i n t o a HT f o r a l l o u t s t and i n g que r i e s ,

// norma l l y j u s t hostname + UnixTS

24 pub l i c S t r ing query ID ;

// L i s t o f IPs to i n c l u d e r e s u l t from

pub l i c S t r ing [ ] IPLi s t ;

29 // i f i n i t i s a l o c a l cmd , t h i s i s i t s pa th

pub l i c S t r ing Init cmd ;

// e l s e i f i t s i n c l u d e d here , t h i s i s i t , or i t s hash i f synced

pub l i c byte [ ] I n i t c on t e n t ;

34

// i f agg i s a l o c a l cmd , t h i s i s i t s pa th

pub l i c S t r ing Agg cmd ;

// e l s e i f i t s i n c l u d e d here , t h i s i s i t , or i t s hash

39 pub l i c byte [ ] Agg content ;

//and the rsync base i f i t i s a d i r

pub l i c S t r ing RSyncBaseDir ;

44 // wheter to c o l l e c t pa th In f o data

pub l i c boolean bCol lPathInfo ;

//3−in−1 f i l e

pub l i c boolean bF i l e3 in1 ;

49

// t imeout f o r t h i s l e v e l in t r e e

pub l i c long timeout ;

}

When a node receives a ResultMessage containing some (possibly aggregated) results

from another node, it adds it to the query and checks if a run of the Aggregator is necessary.
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That check will run the Aggregator, if one is given, in the background thread, or concatenate

the results with newlines.

When it is time to send the results up the tree, the node will determine its parent,

depending on the type, and send a ResultMessage to it. FTTs simply route the message

towards the tree-root, KMRs use the node where the BuildMessage came from as its parent,

and the Coral-KMR calls the Coral overlay using Open Network Computing (ONC)-Remote

Procedure Call (RPC) to determine the parent. If a node happens to receive a ResultMessage

for an unknown query, it will try to route it towards its tree root, or drop it if it is the root.

Listing 4.7: PWHN-server ResultMessage
pub l i c c l a s s ResultMessage implements Message {

2

/∗∗ Where t he Message came from . ∗/

pub l i c Id from ;

/∗∗ Where t he Message i s go ing . ∗/

7 pub l i c Id to ;

// con t en t o f msg

/∗∗ t h e unique ID o f t h i s query per root , used to i d e n t i f y t h e query a t each node∗/

pub l i c S t r ing query ID ;

12

/∗∗ t h e r e s u l t ∗/

pub l i c byte [ ] r e s u l t = new byte [ 0 ] ;

/∗∗and i n f o about path o f r e s u l t ∗/

17 pub l i c PathInfo path ;

/∗∗ t h e roo t f o r eve rybody who doesn t know t h a t query ∗/

pub l i c Id root ;

Path Info

In addition to the results of the query, a ResultMessage optionally carries some annotations

about the path that it took. This information is filled-in by each node along the way,

containing the node ID, its IP, its coordinates, the size in byte sent, the number of children,

a recursive list of those children, and the send time as a time-stamp. The receiving parent

fills in the difference between sending and current time as the delay which, of course, is not

as exact as a ping but should suffice for my purposes. This information is used later by the
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client to recreate the tree graphically (see subsection 4.2.3). This is PathInfo’s source:

Listing 4.8: PWHN-server PathInfo class
pub l i c c l a s s PathInfo implements S e r i a l i z a b l e {

s t a t i c f i n a l long ser ia lVers ionUID = 32782 l ;

5 // IP , hostname o f t h i s node

pub l i c InetAddress node IP ;

// FP ID o f node

pub l i c Id node id ;

10

//number o f i t ems in path , f o r easy d i s p l a y i n g . . .

pub l i c i n t numNodes ;

// l a t o f node , so t h a t c l i e n t does not have to ask d l a b f o r e v e r y t h i n g

15 pub l i c S t r ing l a t ;

pub l i c S t r ing lon ;

// ch i l d r en , t h a t t h i s node go t r e s u l t s from , n u l l i f l e a f

20 pub l i c PathInfo [ ] c h i l d r en ;

// d e l a y to paren t ( f i l l e d in by paren t ) , n u l l i f r oo t

// use s TS sent − not very e x a c t I know . . . bu t what t h e heck

pub l i c long de lay2parent ;

25

// s e r i a l i z e d l e n g t h in b y t e s o f t h e ResMsg t h a t con ta ined t h i s PathInfo ,

// i e . s i z e o f pay load ( r e s u l t ) send over l i n k w i th r ough l y above l a t e n c y

pub l i c long pay l oad s i z e ;

30 // t ime t h i s was s en t to paren t ( as Unix TS)

pub l i c long TS sent ;

}
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Chapter 5

Evaluation

5.1 Objectives and general methods

The objective of the evaluation was to assert the research goals experimentally. This entails

to make sure that PWHN is useful and usable as a measurement toolkit, does not perturb

the inspected system too much; as well as confirming that KMRs are indeed more efficient

in structuring an aggregation tree than FTTs.

For evaluation PWHN needed to be deployed on a set of nodes, an application for in-

strumentation needed to be selected and supporting scripts for measurements had to be

written. Six different tests were developed by writing scripts. They all use CoMon [5] to

collect statistics about the node and digest this information in a specific way to produce a

useful answer (see section 5.3).

To argue in favor of the former we used PWHN to take measurements of the fern system

which is being developed concurrently at UTEP by Eric Freudenthal and Ryan Spring [? ].

As perturbation in a distributed system is not easily expressed in a metric, I looked at the

bytes that are sent around the network, in particular the number of bytes that arrive at

the client.

To validate that my data-structure is more efficient, I look at the structure of the

constructed tree and calculate the average fan-in over all the nodes in both the FTT and

the KMR trees. This should give me a picture of the tree’s regularity.
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5.2 Experimental setup

Experiments described in this section were conducted upon 500 PlanetLab nodes (see Ap-

pendix A).

Since slivers do not come with anything pre-installed, so as to not coerce researchers

to a certain development environment, I had to install Java in order to run PWHN. Even

with the help of vxargs, this would have meant rsync’ing the Java-RPM-file with every

node of our slice, and installing it with the help of a shell script. The jdk-Redhat Package

Manager (RPM) is about 50 MegaBytes (MBs) in size, which copied over slow internet

connections to the farthest locations on the earth, would have taken a while, without

guaranteeing success.

Java was installed upon our PlanetLab slice using RPM and stork [46].

After installing Java everywhere, I made a directory containing all the files needed for

the server portion of PWHN. It also contained a copy of the jar file for FreePastry, and

shell-scripts to start and stop the PWHN server.

The PWHN client can be used to sync this directory (called the “plmr-server” directory)

with all the nodes, and then to start the ring by selecting the start-script from this direc-

tory. After some time the ring should have stabilized and you can start making queries

against planetlab1.utep.edu. I chose this node just because it is located at UTEP, and thus

has the fastest link to me.

Lessons learned Table 5.1 shows the results of the following tests for random sets of

10, 50, 250 and 500 nodes, all averaged over 3 days and different node sets (except the 500

set).

a) ssh - ssh login successful,

b) java - java is installed on the node (tested by executing which java), and

c) ring - node joined the ring.
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Table 5.1: Node counts for different sets

Count ssh java ring

10 7.33 6.67 6/5/5

50 36.33 30.67 12/28/7

250 160.67 116 65/56/13

500 316.33 227.67 215/64/20

Since it is very hard to determine the absolute number of participants in a FreePastry ring,

even though they all joined the same bootstrap node (this does not mean that they all are

in its routing table), I am using three different metrics.

I) ps -Cjava detects the absolute number of nodes still running FreePastry after 5

minutes,

II) nodes joined is the number of nodes joined as noted by the bootstrap node, and

III) fingers is the count of foreign nodes in the bootstrap node’s fingertable.

Remarks

I): If a node cannot contact the bootstrap node it will start its own ring, and still be

running java. If it cannot successfully complete joining the ring within 5 minutes with all

the messages and state involved, as noted by the FreePastry-flag “ready”, the PWHN node

will terminate, and thus no java is running.

II): A node remarks changes in its neighborhood set. This does not give a complete picture

of all nodes joined since joining nodes not in the neighborhood set will not be announced,

not even though all nodes join at the bootstrap node.

III): This is the absolute count of foreign node IDs in the bootstrap node’s fingertable,

which does not need to be complete for the same reasons as above.

To find out why on average only half the nodes running java end up joining the ring,

I tried to rotate the bootstrap node among a list consisting of the first nodes, rather than
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having all contact a single point. I did this because we thought that it might be due

to a socket or filepointer limitation on the virtual machines. This introduced two other

problems: 1) Starting the ring took longer since my algorithm can only start a number of

clients at a time and has to wait for all SSH’s to return, before starting the next set. 2)

If one of the bootstrap nodes is to slow to come up in time or did not come up at all, all

connecting nodes will start their own ring, and not be part of the global ring. This could

of course be alleviated by having a list of bootstrap nodes all of which a starting node tries

to connect to until one works. This is also the reason why the first node in the list (the

global bootstrap) should be reasonably lightly loaded.

I observe that the set of PlanetLab systems available at any particular time varies

widely and, to support experimentation, I need to routinely probe the set of available

hosts. Generally only 10% of the PlanetLab nodes have sufficient resources available to run

java and thus PWHN experiments.

I can only guess that that is due to the high average load of PlanetLab nodes (average

of 9 on 150 nodes, with a standard deviation of 12), and I have seen loads of up to 700!

It also might be due to the small amount of incoming bandwidth that a sliver gets,

because the bandwidth is evenly shared between all slices. Assuming that most nodes have

a full 100MBit connection, the maximum throughput in Kbps should be around 10,000.

The transmit rate average of 258 nodes is 1300.123 with a standard deviation of 1200.158.

The maximum I have seen so far is 13,487. The receive rate is generally close to the transmit

rate, although slightly lower in most cases.

Even though I wanted to avoid (by using stork) copying 50 MBs from my PC to all

nodes, I had no other choice in the end than to do that. Of 270 nodes that I copied the

Java-RPM onto, 244 succeeded in installing Java. Generally, a third of the nodes on which

PWHN is started eventually join the FreePastry ring. As mentioned above, it is not clear to

what this could be accredited. All those nodes do not completely boot into the ring within

5 minutes and terminate themselves. Even activating debugging could not shed any more
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light on the reason.

5.3 Script sets

My first intention was to use PWHN to instrument Coral. But after looking through its log

files, I realized that they do not contain a lot of interesting information. The only useful

piece of information in its log file is the number of hits that the Coral-webserver has seen

since its last log-cycle. Since I do not have access to the live Coral installation, I had to

run my own Coral network. Unfortunately, every Coral-proxy not running on our UTEP

PlanetLab-node crashed when I made a request through it. Thus, the number of hits I

could have queried of Coral would have been only from the UTEP node.

CoMon collects slice-centric and node-centric statistics on each node using CoTop and

exports them through a sensor which is accessible on the local port 3121. Thus, these stats

can be accessed from all slices. They contain information such as the current load, number

of live slices, number of used ports and file-descriptors, outgoing and incoming network

speeds, and top hogging slices for network-throughput, CPU and memory utilization.

Using that information, I designed the following five scripts to collect aggregates from

CoMon. The first script reports the global state as the current average load and its standard

deviation. The next two scripts can be used to find nodes on which to deploy experiments

by looking for nodes that have low network load and those five that have the lowest number

of live slices. The last two scripts can be used to find problems in PlanetLab. They report

the top most hogging slice name as well as the hostnames and the amount of gigabytes free

of nodes whose harddisks are more than 90% used.

5.3.1 Script set one

I constructed a set of scripts to collect and aggregate the current load over all nodes and

its standard deviation. To calculate the average, the sum of all averages is needed along
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with the number of nodes. In addition, for the calculation of the standard deviation, the

sum of the squares of all averages is needed. Therefore, the Init script, which is written in

perl, emits a 1 along with the load and its square.

Listing 5.1: Init script for set one
#!/ usr / b in / env p e r l

$u = ‘ uptime ‘ ;

3 chomp( $u ) ;

%@s = s p l i t (/ / , $u ) ;

@s = s p l i t (/ ,/ , $s [ −3 ] ) ;

$v = $s [ 0 ] ;

$q = $v ∗∗2;

8 p r in t " (1 , $v , $q ) " ;

The python-Aggregator script reads both its inputs, simply adds them up, and outputs

them again.

Listing 5.2: Agg script for set one
#!/ usr / b in / env python

2 import sys

#read i n pu t s

f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

f i r s t = sys . s td in . read ( i n t ( f ) ) . r s t r i p ( )

sys . s td in . read (1)

7 s = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

second = sys . s td in . read ( i n t ( s ) ) . r s t r i p ( )

f i r = f i r s t [ 1 : −1 ] . s p l i t ( " , " )

s ec = second [ 1 : −1 ] . s p l i t ( " , " )

#add them

12 v = in t ( f i r [ 0 ] ) + in t ( sec [ 0 ] )

u = ( f l o a t ( f i r [ 1 ] ) + f l o a t ( sec [ 1 ] ) )

q = ( f l o a t ( f i r [ 2 ] ) + f l o a t ( sec [ 2 ] ) )

p r in t " (% i ,% f ,% f ) " % (v , u , q )

And, last but not least, the python Evaluator reads the input, calculates the average

and standard deviation, and prints both.

Listing 5.3: Eval script for set one
#!/ usr / b in / env python

import sys , math

f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

5 f i r = f [ 1 : −1 ] . s p l i t ( " , " )

#as s i g n some var s

sumx = f l o a t ( f i r [ 1 ] )

sumx squ = f l o a t ( f i r [ 2 ] )
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10 num = f l o a t ( f i r [ 0 ] )

#ge t t h e avg .

avg = (sumx / num)

15 #and g e t t h e s t d dev .

s td dev = math . sq r t ( ( sumx squ − ( ( sumx∗∗2)/num) ) / (num−1) )

i f s t r ( s td dev ) == " nan " :

s td dev = 0

20

# and p r i n t avg , and s t d dev .

pr in t " (% f ,% f ) " % (avg , s td dev )

5.3.1 enumerates the results of an execution of these scripts over 230 nodes. Also shown

is the extra information that is calculated for each run.

230 nodes; native; ’Oct 1; 2006 2:50:00 PM’:

Time: 138681

Avg. ms/hop: 602.9609

Client bytes in: 3673

% answered/all asked: 100.0%

Avg. bytes/link: 15.969565

Avg. bytes/msec: 0.001758027

Avg. link delay: 9083.8

Avg. fan-in: 230

Avg. path length: 1

(8.033870,9.247825)

5.3.2 Script set two

Script two reads the CoMon stats by connecting to “localhost:3121” because the CoMon

sensor is running on this port, and extracts the current transmit and receive throughputs.

It outputs a tuple consisting of the hostname and the two extracted values only if they are
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both below the cutoff of 500. Since I simply want all those tuples concatenated, there is

no Aggregator.

Listing 5.4: Init script for set two
#!/ usr / b in / env python

import os , u r l l i b

3

#de f i n e cut−o f f f o r tx , rx

c u t o f f = 500

comon = " h t t p :// l o c a l h o s t : 3 1 2 1 "

h = os . popen ( ’ h o s t n a m e ’ ) . read ( ) . s t r i p ( )

8 l i n e s = u r l l i b . ur lopen (comon ) . r e a d l i n e s ( )

tx = f l o a t ( l i n e s [ 3 1 ] . s p l i t ( " : " ) [ 1 ] . r s t r i p ( ) )

rx = f l o a t ( l i n e s [ 3 2 ] . s p l i t ( " : " ) [ 1 ] . r s t r i p ( ) )

13 i f ( tx < c u t o f f ) and ( rx < c u t o f f ) :

p r in t " (% s ,% f ,% f ) " % (h , tx , rx )

A sample output from 75 nodes looks like this.

75 nodes, native; ’Sep 29; 2006 2:44:56 AM’:

Time: 85167

Avg. ms/hop: 1135.56

Client bytes in: 626

% answered/all asked: 100.0%

Avg. bytes/link: 8.346666

Avg. bytes/msec: 6.5535464E-4

Avg. link delay: 12736.106

Avg. fan-in: 75

Avg. path length: 1

(planetlab-02.ipv6.lip6.fr,171.000000,343.000000)

(ait05.us.es,300.000000,215.000000)

(dragonlab.6planetlab.edu.cn,403.000000,119.000000)

(planetlab1.snva.internet2.planet-lab.org,63.000000,117.000000)

(planetlab2.atcorp.com,223.000000,182.000000)
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(planetlab2.chin.internet2.planet-lab.org,247.000000,206.000000)

(planetlab1.ucb-dsl.nodes.planet-lab.org,227.000000,329.000000)

(planetlab2.csg.unizh.ch,410.000000,344.000000)

(pli2-pa-2.hpl.hp.com,263.000000,252.000000)

(planetlab2.ucb-dsl.nodes.planet-lab.org,167.000000,429.000000)

(sjtu1.6planetlab.edu.cn,264.000000,253.000000)

(plnode01.cs.mu.oz.au,90.000000,123.000000)

5.3.3 Script set three

Script number three extracts the number of live slices from CoMon and extracts only the

top five with the lowest live slices using the Aggregator. It keeps a list of at most five

(hostname,live) tuples and checks every line from both inputs against this list. If the

number of live slices is lower than the current list-element, it is replaced. At the end it

emits the list with five elements.

Listing 5.5: Init script for set three
1 #!/ usr / b in / env python

import os , u r l l i b

comon = " h t t p :// l o c a l h o s t : 3 1 2 1 "

l i n e s = u r l l i b . ur lopen (comon ) . r e a d l i n e s ( )

6 h = os . popen ( ’ h o s t n a m e ’ ) . read ( ) . s t r i p ( )

l i v e = in t ( l i n e s [ 3 4 ] . s p l i t ( " : " ) [ 1 ] . r s t r i p ( ) )

p r in t " (% s ,% i ) " % (h , l i v e )

Listing 5.6: Agg script for set three
1 #!/ usr / b in / env python

import sys

#fun c t i o n t h a t check s i − a (h,# l i v e ) s t r i n g − a g a i n s t a l l 5 e l emen t s in t h e l i s t l

#the l i s t h c on t a i n s t h e co r r e spond ing hostnames

def check ( i , l , h ) :

6 i f ( i . s t a r t sw i th ( " ( " ) ) :

va l = i [ 1 : −1 ] . s p l i t ( " , " )

#f i n d i f i t i s in l i s t

f o r j in range ( 5 ) :

i f ( i n t ( va l [ 1 ] ) < l [ j ] ) :

11 l [ j ] = in t ( va l [ 1 ] )

h [ j ] = va l [ 0 ]
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re turn

#read i n pu t s

16 f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

f i r s t = sys . s td in . read ( i n t ( f ) ) . r s t r i p ( )

sys . s td in . read (1)

s = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

second = sys . s td in . read ( i n t ( s ) ) . r s t r i p ( )

21 #we have a bunch o f l i n e s now , s p l i t on new l ine

f = f i r s t . s p l i t ( " \ n " )

s = second . s p l i t ( " \ n " )

l = [10000 ,10000 ,10000 ,10000 ,10000 ]

h = [ " " , " " , " " , " " , " " ]

26 #then make l i s t

f o r i in f :

check ( i , l , h )

f o r i in s :

check ( i , l , h )

31 # and now p r i n t

f o r j in range ( 5 ) :

i f (h [ j ] ) :

p r i n t " (% s ,% i ) " % (h [ j ] , l [ j ] )

This is a sample from an experiment with 150 nodes.

150 nodes; native; Oct 1; 2006 1:29:07 AM’:

Time: 123979

Avg. ms/hop: 826.5267

Client bytes in: 4643

% answered/all asked: 100.0%

Avg. bytes/link: 30.953333

Avg. bytes/msec: 0.0033714727

Avg. link delay: 9180.953

Avg. fan-in: 150

Avg. path length: 1

(mercury.cs.brown.edu,0)

(plab1.eece.ksu.edu,0)

(cs-planetlab1.cs.surrey.sfu.ca,1)

(edi.tkn.tu-berlin.de,2)
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(dragonlab.6planetlab.edu.cn,2)

5.3.4 Script set four

This set of scripts was designed to extract the top hogging slice name from each node and

summarize this information by emitting slice names and the number of nodes it hogs.

Listing 5.7: Init script for set four
1 #!/ usr / b in / env python

import os , u r l l i b

comon = " h t t p :// l o c a l h o s t : 3 1 2 1 "

l i n e s = u r l l i b . ur lopen (comon ) . r e a d l i n e s ( )

6 h = os . popen ( ’ h o s t n a m e ’ ) . read ( ) . s t r i p ( )

c = l i n e s [ 2 6 ] . s p l i t ( " : " ) [ 1 ] . r s t r i p ( )

cpuhog = c . s p l i t ( "  " ) [ 2 ]

p r in t " (1 ,% s ) " % ( cpuhog )

Listing 5.8: Agg script for set four
1 #!/ usr / b in / env python

import sys

#check s t h e hash h , i f t h e name g i v en in t h e t u p l e i i s a l r e a d y there , and adds i t s number

#c r e a t e s new key o t h e rw i s e

def check ( i , h ) :

6 i f ( i . s t a r t sw i th ( " ( " ) ) :

i = i [ 1 : −1 ] . s p l i t ( " , " )

i f h . has key ( i [ 1 ] ) :

h [ i [ 1 ] ] += in t ( i [ 0 ] )

e l s e :

11 h [ i [ 1 ] ] = in t ( i [ 0 ] )

#read i n pu t s

f = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

f i r s t = sys . s td in . read ( i n t ( f ) ) . r s t r i p ( )

sys . s td in . read (1)

16 s = sys . s td in . r e ad l i n e ( ) . r s t r i p ( )

second = sys . s td in . read ( i n t ( s ) ) . r s t r i p ( )

#we have a bunch o f l i n e s now , s p l i t on new l ine

f = f i r s t . s p l i t ( " \ n " )

s = second . s p l i t ( " \ n " )

21 #now j u s t b u i l d a hash w i th t h e names and the t imes t h ey appeared

h = {}

f o r i in f :

check ( i , h )

f o r i in s :

26 check ( i , h )

#and p r i n t

f o r k , v in h . i t e r i t em s ( ) :

p r in t " (% i ,% s ) " % (v , k )
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Listing 5.9: Eval script for set four
1 #!/ usr / b in / env python

import sys , math

de f check ( i , h ) :

i f ( i . s t a r t sw i th ( " ( " ) ) :

6 i = i [ 1 : −1 ] . s p l i t ( " , " )

i f h . has key ( i [ 1 ] ) :

h [ i [ 1 ] ] += in t ( i [ 0 ] )

e l s e :

h [ i [ 1 ] ] = in t ( i [ 0 ] )

11

f = sys . s td in . read ( ) . r s t r i p ( )

e = f . s p l i t ( " \ n " )

h = {}

f o r i in e :

16 check ( i , h )

#and p r i n t

f o r k , v in h . i t e r i t em s ( ) :

p r in t " (% i ,% s ) " % (v , k )

Sample of experiment with 255 nodes.

255 nodes; native; ’Oct 1; 2006 1:42:40 AM’:

Time: 134477

Avg. ms/hop: 527.3608

Client bytes in: 3784

% answered/all asked: 100.0%

Avg. bytes/link: 14.839215

Avg. bytes/msec: 0.001807337

Avg. link delay: 8210.541

Avg. fan-in: 255

Avg. path length: 1

(2,princeton_adtd)

(5,cernettsinghua_zhanghui)

(2,ucin_galaxy)

(1,ethz_kangoo)

(1,urochester_robinhood)
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(5,rice_epost)

(5,utep_1)

(1,nyu_oasis)

(2,tsinghua_wwy)

(1,cornell_anycast)

(7,ucb_bamboo)

(63,nyu_d)

(4,rice_jeffh)

(15,princeton_codeen)

(2,utah_svc_slice)

(3,unimelb_vmn)

(2,epfl_kornfilt)

(10,princeton_coblitz)

(2,northwestern_remora)

(1,colorado_tor)

(3,uw_ah)

(6,umn_dcsg)

(2,idsl_kspark)

(11,irb_snort)

(1,utah_elab_27274)

(4,iitb_dita)

(8,arizona_stork)

(15,root)

(33,utah_elab_24927)

(10,passau_crawler)

(12,hplabs_oasis)
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5.3.5 Script set five

Experiment five extracts the usage-percentage of the hard-disks from CoMon and emits a

(hostname,disc-free/GB) tuple if the hard-drive is more than 90% full. Since a list of all

nodes that meet this criteria is sought, no Aggregator is given.

Listing 5.10: Init script for set five
1 #!/ usr / b in / env python

import os , u r l l i b

c u t o f f = 90

comon = " h t t p :// l o c a l h o s t : 3 1 2 1 "

6 l i n e s = u r l l i b . ur lopen (comon ) . r e a d l i n e s ( )

h = os . popen ( ’ h o s t n a m e ’ ) . read ( ) . s t r i p ( )

c = l i n e s [ 1 4 ] . s p l i t ( " : " ) [ 1 ] . r s t r i p ( )

c = c . s p l i t ( "  " )

perc = in t ( c [ 1 ] [ 0 : − 1 ] )

11 f r e e = f l o a t ( c [ 2 ] )

i f ( perc > c u t o f f ) :

p r in t " (% s ,% f ) " % (h , f r e e )

My run of this script did not reveal any problematic nodes, so no sample output is

given.

5.4 Results

5.4.1 Goal - useful tool

To argue that PWHN is useful, I will compare the steps needed for measuring and debugging

a P2P system with and without PWHN. Since no other system, except MapReduce which is

not designed for P2P, that splits its aggregation into smaller operators lets the user specify

arbitrary programs for those operators, a developer would have to build such a system

herself.

These steps are basically the ones that were taken to build a monitoring system for

Coral. So, let us consider Coral as an example. The requirements and implementation of

Coral did not include instrumentation infrastructure. After Coral was finished, deployed
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on PlanetLab, and running well, the desire to know exactly how well it was running arose.

Code for collecting and storing basic state about the system (logging code) has to be

present in any system, regardless of PWHN. Logging code was added to Coral, and a

collection system was devised.

This system is centralized and works as follows. The Coral monitoring agent, called the

Coral-monitor, is a process that runs on each Coral node and periodically connects to all

three locally running Coral processes to request logging data. That data is written out to

disk by the monitor and each of the three processes resets its counters and logging status.

Another program, called the Coral-crawler, running on a node outside of Coral, is started

by cron periodically. This programs’ task is to connect to all specified coral-monitors and

request their log files to save them locally. A minimal set of nodes serves as a starting point

because the crawler learns of new nodes while crawling.

These log files are parsed and inserted into a mySQL database by a set of shell and

mySQL of scripts. This approach did not work for long and was finally discontinued for

two reasons. First, because it connected to all nodes and requested unaggregated data

from them. Second, because this data was inserted into the database unprocessed which

resulted in about 100 rows added to the DB every 30 minutes. The reason that this did

not work (a DB should be able to handle millions of rows) was that all processing and

analysis was done inside the DB using SQL. This was because the queries involved execu-

tion of a complex select, joining a number of tables, each containing a couple of million rows.

Obviously, this approach did not scale. To address this, an infrastructure is most suit-

able if it constructs an aggregation tree tailored to the specific P2P system it is targeting

and does its selection and aggregation of relevant data as close to the sources as possible.

If it is desired to make the system as general and at the same time as powerful as possi-

ble, a framework very close to PWHN will result. This framework will have to be able to

construct an aggregation tree on top of the original system’s network and be able to make

sure that all participants agree on the programs that are used as operators for selection
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and aggregation. It will have to take care of executing the Init operators on the leafs as

well as the Aggregate functions on internal nodes and pass the results up the tree to the

right parent. In the case of P2P networks, this is not an easy task because of their highly

dynamic membership characteristic.

PWHN offers a toolkit that builds the tree and takes care of the execution of all relevant

operators and, furthermore, is able to present the results graphically. To use it, Java needs

to be present on all nodes and scripts that obtain (select) the desired data and aggregate it,

need to be written. After the PWHN-server part and accompanying files have been copied to

all nodes using the client, it can be started to form the FreePastry ring. When the ring has

stabilized, queries can be made against the participants. PWHN takes care of transmitting

and refreshing files on nodes that have joined later, as well as detecting nodes that have

left.

5.4.2 Goal - minimize disruption

To get a picture of the perturbation of an instrumentation framework on the system being

measured, I looked at the number of bytes that the collection point (the client node) is

receiving for a query.

If the results are simply concatenated instead of being aggregated, there is obviously no

difference between a flat and a tree approach; the number of bytes transmitted increases

linearly with the number of participants. If the data is being aggregated en-route, however,

aggregation trees should have an advantage. The expected number of bytes in a flat ap-

proach increases linearly with the number of nodes because all aggregation is done locally.

In an aggregation tree approach, I would expect the number of incoming bytes to stay the

same for any number of nodes because all data is aggregated inside the tree and only the

final result is transmitted to the client. This difference can be seen in Figure 5.1.

I ran three experiments with 10, 50 and 250 nodes for all five script sets and both flat

and tree algorithms. The number of bytes that the collecting client receives for both the
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flat and the KBT algorithms is shown in Figure 5.1.

Figure 5.1: Bytes in: tree vs. flat

Despite the many colors, it is still discernible that the transmission size of flat approaches

in general increases linearly with the number of nodes, whereas the incoming transmission

size for tree approaches stays the more or less the same regardless of the actual number

of participants. The variations are due to results that only appear in the output of bigger

node sets which can happen for example in set two (see subsection 5.3.2).

Thus, it is to be expected that an aggregation tree minimizes perturbation of the mea-

sured system.

5.4.3 Hypothesis - KMR suitable for P2P

To determine if our KMR tree builds a more efficient aggregation tree on top of a DHTs

structure than a FTT, I looked at the average fan-in in the tree.
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Since a FTT sends all aggregated data towards the root of the tree using the DHT, I

expected that most of the nodes send their result directly to the root, resulting in a higher

fan-in at the root. A KMR uses the structure of the tree to send results up the tree, so I

would expect the average fan-in to be lower.

Experiments with around 10, 20 and 40 answering nodes, of which the average fan-in is

shown in Figure 5.2, show that this is indeed the case.

Figure 5.2: Avarage fan-ins in tree: FTT vs. KMR

Again despite the many colors, it is visible that FTTs in general have a linear fan-in in

the number of nodes, whereas KMRs have an almost flat fan-in regardless of the number

of nodes. I expected that FTTs would build an additional level if not all nodes join the

same bootstrap node, because this ensures that not all nodes have that node’s key in their

routing table, but this was not the case. It seems that even FreePastry rings with over

a hundred nodes have not enough ID’s to cause two nodes to share the same prefix at a

specific level. Thus, for each digit in a given target key there is only one node in every
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fingertable, which causes FTT-messages always to be routed in one hop.

Figure 5.3 and Figure 5.4 show the links between nodes, as noted by the PathInfo,

plotted on a 2d representation of the world.

Figure 5.3: KMR-tree links drawn on a world map

Figure 5.4: FTT-tree links drawn on a world map

Figure 5.5 shows the structure of a FTT tree and a KMR tree with around 20 nodes

side-by-side. In that picture as well as in Figure 5.4, it is clearly visible that the FTT nodes

all report to the root, whereas the KMR tree has more levels, thus reducing the load on the

root.

In conclusion, the KMR builds a more regular tree with a lower fan-in at the root which

helps distribute the load more evenly in the system.
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Figure 5.5: Structures of FTT and KBR trees for around 20 nodes side by side
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Chapter 6

Future work

As the currently implemented version does not concern itself much with security, this is

left for future additions.

First and foremost, this means introducing security certificates to the client-server com-

munication, as this is done unencrypted as of now. Requiring clients to supply certificates

with which the executables need to be signed before their execution is another worthwhile

security consideration.

An additional security feature could be to require clients that specify executables that

already exist on the servers to supply a cryptographic hash of the executables or a public

key with which the executables need to be able to answer a challenge correctly before

accepting any answers from them.

The ability to name unix domain sockets (pipes) or sockets instead of filenames on which

data is to be accepted from already running daemons is another possible future addition.

Regarding algorithms, I have not implemented everything that is described in the in-

troductory chapters due to time constraints. All current approaches just wait for a time

inversely proportional to the node’s IDs distance to the root ID for answers from its chil-

dren. Instead, one of the other solutions from 4.1.1 could be implemented, for example

estimation using the fingertable.

Additionally, the parent from which the BuildMessage came from is assumed to still

be good and the result is sent to it in both FreePastry implementations. Instead, a more

complicated approach of using the DHT to look up the correct parent, because it could have

changed in the meantime, could be devised.
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I did not implement the KBT algorithm because it seemed to much work to keep the tree

structure in FreePastry intact and to chose the candidates. Remember that there is only

one KBT which has to be kept up-to-date under churn, and cannot be built on each query

like in the current approach. Moreover to be able to argue that a KMR is more efficient

than a KBT, the system has to be put under considerable load from a number of clients

with different roots. A future version could include the algorithmic foundations for a KBT.

Some more possible additions are outlined in the following paragraphs.

Allow input to the Init operators that is not static but dependent on the number of

overall participants and the current node number. That is, give the user the ability to

specify an input range over an arbitrary domain which will get partitioned between all live

nodes by PWHN and supplied to each Init. For example, if the user wanted to be able to

distribute fractal generation, he would specify the domain to be natural numbers and the

ranges for the x and y coordinates be 0 to the desired image size. PWHN would then take

these ranges, divide them evenly among all nodes and supply the respective ranges to the

Init functions running on those nodes. These Init functions could either produce partial

images which would be overlayed by the Aggregator to form the final image, or simply

supply color values to the evaluator which would generate an image from them.

Give the user the ability to create sessions. A session would set up an aggregation

tree including all currently selected nodes without specifying any operators. Then, a query

could be disseminated down that tree causing the operators to be executed any time during

the lifetime of a session without the overhead of re-creating the tree every time. Once a

session is not needed anymore it can be deleted, thus causing the tree to be disintegrated.

These sessions could be used to only specify a subset of the active nodes to be included

in the query, thereby making queries more efficient if a complete picture is not desired.

Rather than building the tree over all nodes and just having those nodes execute the Init

function that are to be included in the query (which is the way it is done in the current

implementation), the tree could instead be built spanning only the relevant nodes. This
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technique is used in MON [23].

Employ techniques that are known as online querying [10, 11, 12, 13, 14, 35, 36].

Systems that support online querying start displaying results from a query as soon as the

first result data arrives, and continuously update the display over the lifetime of the query

to include more detail. This enables the user to anticipate the outcome of the query and

stop it early if he made a mistake in the specification; or it allows him to refine the query,

e.g. to query a smaller subset of the original domain. This prohibits the use of aggregation,

however, since a characteristic of aggregation is that the complete result is available at only

one time, at the end. Moreover, steps have to be taken to guarantee that incoming results

are randomly spread over the whole result set. If they do not happen to be randomly

distributed, early renderings of the final result will be skewed.

Another possible addition is the storage, and thus replication of query results at different

levels of the tree. Firstly, this enables the system to include older data of nodes that have

failed recently if consistency bounds are specifiable. Secondly, it allows the inclusion of

historic data in queries if those queries are regularly executed to store their results. For

this, up-k and down-j parameters are useful. They let the writer of a query choose the

replication parameters, i.e. how far up and down the tree results of single nodes are to

be stored, depending on the update rates of the underlying variables. Adding replication

abilities to PWHN poses a problem because replication and later retrieval inherently assume

knowledge of meta-data (i.e. schemas) about the queried variables which PWHN does not

posses. The knowledge of this meta-data in PWHN only exists in the operators themselves,

which is why storage and retrieval logic would have to be included in the operators. This,

in turn, can make the operators unnecessarily complex.

6.1 Future work using Coral

Theoretically, the Coral overlay could be used in the dissemination phase in the following

way.
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The challenge lies in knowing which nodes are members of sub-clusters, that is smaller

clusters that are fully contained in the current one. Once those nodes are known it is trivial

to chose one representative deterministically for each cluster that is responsible for further

spreading the word in that cluster, and the same steps are taken for each smaller cluster. It

might, for example, just be the node that is closest in its cluster to an ID that is assigned

to each query on creation. Since this is different for each query-ID though, the list will

change constantly. Another way is to have the node in each cluster that is closest to the

cluster-ID be the representative for that cluster. Since this node will only be used in the

dissemination phase, there is no danger of overloading it with too many queries.

Solution 1 Since there exists no central instance in Coral that knows who is a member

of which cluster, or even who is a member at all, the challenge is still to find those who

are representatives of sub-clusters. This can be solved by the addition of a second DHT to

Coral. This DHT will have no levels, i.e. it will be accessible at each node uniformly and

will contain only the representatives of each cluster indexed under their cluster ID. Each

node will need to periodically look up all its cluster-IDs in that same cluster and if it is the

closest one to its ID, it will insert itself in the global representative DHT.

This still leaves the problem of knowing which clusters exist. Since passively listening

for cluster information in normal traffic is not likely to yield a complete picture, a list needs

to be built. This could be done by the representatives who will be responsible for inserting

information about themselves and their clusters at a well known place in the global (level-

0) DHT or the second (representative) DHT. This will result in a list being built at that

place containing information about all existing clusters. Single entries in that list have to

be soft-state since clusters can vanish, like anything else in a DHT. Since this list contains

all the information of the representative DHT, the list would make the representative DHT

obsolete.
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Solution 2 This leads to another solution. The information about its sub-clusters is only

needed in a cluster itself. Once a node determines that it is the representative for a cluster,

it inserts itself and its cluster information under the ID of its next higher cluster in the

DHT of that cluster. This will end up building a list of all representatives of sub-clusters

exactly where it is needed - at the representative of the next higher cluster. This even

releases a node from the burden of having to look itself up in all its clusters, since it can

infer from the simple fact that a list is stored at itself that it must be the representative

for the cluster under which ID this list is stored.

However, this approach comes with a trade-off. If the number of members is small, the

second solution is faster and more optimal than the first. When the number of participants

crosses a certain threshold (which needs to be determined) then building a huge list at one

node can overload that node, thus introducing a second representative-DHT is clearly the

better and more optimal solution.
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Chapter 7

Conclusion

This thesis describes PWHN, an infrastructure that is useful for instrumenting, debugging

a monitoring of distributed systems. For large-scale P2P systems, hierarchical aggregation

is a fundamental abstraction for scalability.

PWHN makes two unique contributions. Firstly, it allows the user to specify arbitrary

programs for the three operators that the collection and aggregation are split into, much

like MapReduce does. These three phases have been used internally by traditional DBMS

for SQL formulated aggregation queries for a long time.

Secondly, it extends ideas from related systems to construct aggregation trees on top of

DHTs to achieve higher efficiency.

An additional contribution is the naming and taxonomy of algorithms for building

aggregation-trees upon KBR systems (KBTs and FTTs).

I argue that the algorithms used by others are not optimal and show how they can be

ameliorated. I ran measurements of PWHN itself which show that my hypotheses is correct.

I implemented the PWHN toolkit to help researchers conduct, monitor and debug dis-

tributed experiments on PlanetLab. This toolkit is useful because distributed software is

generally designed to be efficient, which could be compromised by an included measure-

ment infrastructure. Conversely, if it was not designed with instrumentation in mind, it

might not be able to support the needed operations. In this manner, PWHN offers a “bridg-

ing” architecture which permits a system not carefully designed to instrument itself to be

effectively instrumented.
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Glossary

A

ACL Access Control List

ADHT Autonomous DHT

ADT Abstract Data Type

AO Aggregation Overlay

API Application Programming Interface

C

CDN Content Distribution Network

C.S. Computer Science

D

DBMS Database Management System

DHT Distributed Hash Table (see section B.2)

DNS Domain Name System

DSHT Distributed Sloppy Hashtable

F

FC Fedora Core

FTP File Transfer Protocol
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FTT FingerTable-based Tree (see subsection 2.5.2)

G

GPL General Public License

GUI Graphical User Interface

I

ICMP Internet Control and Message Protocol

IDL Interface Definition Language

IP Internet Protocol

ISEP International Student Exchange Program

K

KBR Key-Based Routing layer (see section B.1)

KBT Key-Based Tree (see subsection 2.5.1)

KMR Key-based MapReduce (see subsection 4.1.1)

L

LAN Local Area Network

LGPL Lesser General Public License

M

MAC Media Access Control

MB MegaByte

MIB Management Information Base
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N

NAT Network Address Translation

NMSU New Mexico State University

O

OA Organizing Agent

ONC Open Network Computing (see subsection D.2.2)

OS Operating System

P

P2P Peer-to-Peer

PHP PHP Hypertext Preprocessor

PIER P2P Information Exchange & Retrieval

PLC PlanetLab Central (see Appendix A)

PLMR PlanetLab-MapReduce

PWHN PlanetenWachHundNetz

R

RADC Research and Academic Data Center

RFC Request for Comments

RO Routing Overlay

RPC Remote Procedure Call

RPM Redhat Package Manager
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RTT Round Trip Time

S

SA Sensing Agent

SDIMS Scalable Distributed Information Management System

SNMP Simple Network Management Protocol

SOMO Self-Organized Metadata Overlay

SQL Structured Query Language

SSH Secure SHell

T

TAG Tiny AGgregation service

TCP Transmission Control Protocol

TLD Top Level Domain

TTL Time-To-Live

U

UDP Universal Datagram Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

UTEP University of Texas at El Paso

V

VM Virtual Machine
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X

XDR eXternal Data Representation

XML eXtensible Markup Language
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Appendix A

PlanetLab

This gives a short but sufficient description of the of the PlanetLab execution environment.

PlanetLab is a distributed testbed intended for research in P2P. It consists of 707 nodes

scattered around the world donated by research and academic institutions. All nodes are

remotely managed by a management consortium in Princeton.

The next section gives a short overview of the linux environment that slices provide

researchers with followed by some terminology.

A.1 Environment

After joining PlanetLab and donating at least two nodes, an institution can request a

slice. When this slice is instantiated, PlanetLab Central (PLC) creates a VM on all the

participating nodes and transmits the public keys of allowed users to them.

When a sliver is created, it is in a pristine state. It has litle more than an SSH daemon

installed. This allows researchers to install whatever execution environment they prefer,

be it Java, plain C or Mono. To be able to log into the respective slice each node runs an

administrative slice with one global SSH daemon. When a user logs into this daemon it

forwards the connection to the appropriate slice and chroots into its VM.

VMs are implemented by a Virtual Machine Monitor (VMM), of which only one runs on

each machine. The current VMM is linux-based and only supports one type of VM at the

moment: Linux vservers. VMs are created and controlled by a node manager on each node.

It has a well-known interface that can be called upon from the outside world, either by PLC

or by other infrastructure services, and responds by creating VMs and binding resources to
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it.

Vservers ensure separation between slivers by simulating a complete, dedicated linux

machine. Slivers look like a single linux install on a physical machine and know nothing of

the other slivers. In fact, they have no way of interfering with each other, except through

an interface the node-manager exports. This interface allows slivers to “share” directories

and other slivers to “mount” those. The only other way to pass data from one sliver to

another is through sockets.

All remote calls in PlanetLab are made through XML-RPCs. Calls that come from PLC

are signed using the PLC private key whose corresponding public key is hardcoded into

every node.

PlanetLab allows slices to create and bind normal and raw sockets through the use of

VNET [49], the PlanetLab virtualized network access module. Packets that pass through

VNET are tracked and delivered to the slice that created the socket. Incoming packets that

do not belong to an already bound socket are delivered to the administrative slice. Slices

may bind sockets to an unbound port or send out packets on a previously unbound port

which results in this port being bound to the slice. This is sometimes called lazy binding.

PlanetLab implements raw sockets as what is called safe raw sockets. The kernel sup-

presses all TCP and UDP replies related to raw sockets in order to not interfere with it.

Raw sockets have to be bound to the VNET virtual ethernet interface by the slice. Since raw

packets are actually re-routed through the IP-stack of the kernel, slices may include Media

Access Control (MAC) and Internet Protocol (IP) headers, but destination and sender MAC

addresses are ignored. The IP-header has to be well-formed and routable, however, and the

socket has to be the one owned by the slice. Only certain Internet Control and Message

Protocol (ICMP) messages are allowed. Furthermore, the packet is only passed through if

the port number is above 1024.
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A.2 Terminology

“Node”

A PlanetLab node is a machine dedicated to PlanetLab and running the Plan-

etLab flavor of Linux (a modified Fedora Core (FC) 2). It is connected to

the internet and preferably not located behind any kind of firewall or Network

Address Translation (NAT).

“Site”

An institution that is a member of PlanetLab has a distinct site, i.e. a location

in the 3-d world where its nodes reside. Thus, a site runs multiple nodes in its

location in the world. Each site has to donate at least 2 nodes to PlanetLab.

“Slice”

A slice is the “virtual” abstraction of a dedicated part of the resources on a

set of nodes. It is therefore like a crosscut across multiple nodes. Each node

runs one VM per slice that is assigned to it. A slice is typically used for one

experiment only.

“Sliver”

The VM on one node that is part of a particular slice is sometimes called a

sliver.
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Appendix B

Distributed Hash Tables (DHTs) und

their Key-Based Routing

layers (KBRs)

This appendix gives a description of a DHTs interface and its corresponding KBR.

B.1 The KBR

The KBR guarantees to route a message to the owner of a given key in O(logk(n)) hops

for an n-bit wide ID-space. To do this, the KBR basically employs a k-ary search in the

ID-space. The arity depends on the base that the KBR defines its IDs to be. Without loss

of generality I assume them to be base 2 in my examples, like most DHT implementations

do today.

IDs can be seen as long numbers in the base they are defined in. To change any number

to any other, all that needs to be done is to “correct” digits in the source number starting

from the beginning until the target number is reached. For this, at most “number-of-digits”

steps are needed. Since the number of digits of any number depends on the base, this would

take at most O(logk(n)) for base k.

Thus, to send a message from any ID to any other we only have to “correct” one digit

of the ID at each step. For IDs defined in base 2 this is basically employing a distributed

binary-search by making a routing decision at each node. It checks in which range (subtree

of the search-tree) the target ID falls and forwards the message to a node in that subtree.
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The DHT specification has various dimensions of freedom in this process.

First, digits can be corrected strictly in order or out of order, which essentially results

in hypercube routing.

Second, digits that have an absolute order (like in most numbering systems), can be

corrected in only one direction; for example up, or in both. This does not make any

difference in base-2 routing, because a bit can only have one of two states.

Of course digits are fixed mod(logk(n)), thus correcting “upwards” eventually leads to

the right digit, it just takes longer. This also has to do with the distance-metric used for

the ID-space. If the metric allows negative distances, but the implementation only allows

to route in positive direction, it has to go “around,” whereas if the metric used is symmetric

by essentially taking the absolute value of the distance, this would not happen. The XOR

metric used by Kademlia, for example, has this property.

Thirdly, an implementation has the choice of only allowing messages to be forwarded

to the exact node that has the next digit corrected and shares the digits after it (the

suffix ) with the current node (like in my KMR), or its immediate successor if that node

is not there (like in Chord). Instead, the DHT could allow the message to be forwarded

to any node that has the correct next digit. If digits are corrected upwards this would

only work as long as the next hop is still smaller. The case when digits can be corrected in

both directions allows the DHT the freedom to forward to the whole sub-space (or sub-tree).

This process can be visualized in at least two ways.

The top parts of Figure B.1 and Figure B.2 represent it as a circle, which is commonly

used for Chord-like DHTs because they are defined to only be able to route upwards and

use the exact finger or its immediate successor. In the circle this means that messages are

always passed around clockwise if IDs increase in that direction.

The bottom parts of Figure B.1 and Figure B.2 show the representation as a decision-

tree; that is, routing to ever smaller neighborhoods (sub-trees) of the target key, which is

more commonly used for Kademlia-like implementations.
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Figure B.1 shows the fingers for the Chord DHT at the top, and for Kademlia-style

DHTs at the bottom. In this case, I assume a 4-bit wide ID-space, which is common to

both and thus shown in the middle. Note that Kademlia chooses nodes of the other half-

tree as fingers and keeps them in a totally ordered list using an implementation specific

0000 0001 0011 0101 0111 1001 1011 1110 1111

+8

+4

+2

+1

Flat ID-Space

Kademlia Tree-like
ID-Space

Chord circular ID-Space

+8

+4
+2

+1

Figure B.1: Example fingers in Chord and Kademlia
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distance-metric (commonly RTT). Also note that while in Chord the dividing lines lie on

specific nodes; that is, the representation allows drawing a node on the line, whereas the

representation as a tree necessitates infinitely small lines that do not actually go through

any nodes, although theoretically they would.

0000 0001 0011 0101 0111 1001 1011 1110 1111

Flat ID-Space

Kademlia Tree-like
ID-Space

Chord circular ID-Space

Figure B.2: Example of a lookup in Chord and Kademlia

Figure B.2 shows a lookup of Key15(1111) starting at Node0(0000). Kademlia termi-
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Table B.1: Interface of the KBR according to the Common API [6]

Function Description

route(key, msg, hint) Routes msg to the node that is closest

to the given key using hint for the first hop

forward(&key, &msg, &nextHop) Function in the application that is called

on each intermediate hop while

routing towards key

deliver(key, msg) Delivers a msg to the application on the node

that is closest to the key

node[] localLookup(key, num, safe) Produces a list of up to num nodes that can

be used as a next hop for routing

towards key

node[] neighborSet(num) Returns up to num nodes from the local

neighbor-set

node[] replicaSet(key, maxRank) Returns nodes from the replica-set for key

of nodes up to maxRank

update(node, joined) Function in the application that is called

whenever the local neighborhood changes

nates one step earlier than Chord because the first finger for the other half-tree happens

to correct three bits in one step, but it could have just as well been the same finger as in

Chord, thus using the same number of steps.

B.2 The DHT

Once the KBR is in place, all the DHT has to do is to build a layer above it that will

implement the well-known hashtable interface.
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Table B.2: Interface of a DHT according to the Common API

Function Description

put(key, val) Stores val in the DHT under key

remove(key) Removes the value for given key

val = get(key) Retrieves val for key from the DHT

For that, it needs a way to map keys into the ID-space. Most DHTs use a hash function

that distributes IDs statistically even, like SHA-1. To implement the familiar put and get

after the key is mapped into the ID-space, the DHT only needs to route a message towards

the hash of the key (h(key)), asking whoever gets it to store the value. Because everybody

has to agree on the key to be able to look it up, everybody can use it’s hash to route a

message towards it. A simple get message routed to the owner of h(key) will retrieve the

value again.
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Appendix C

FreePastry

PWHN uses FreePastry because it provides the services of a KBR; that is, message routing.

This appendix provides a brief introduction to FreePastry and its functionality.

C.1 Pastry

The Pastry DHT [41] defines its ID-space to be a circular, 128-bit ring. IDs are assumed to

be base 4 but can be defined in any base. Like any DHT, Pastry guarantees correction of at

least one digit in any base at each hop. Pastry defines its proximity as clockwise distance

on the ring, like Chord; thus, it is not symmetric. The advantages over Chord [45] lie in its

locality properties, as well as the ability to route to any node whose next bit differs (Chord

restricts its fingers to the nodes at exact places on the ring or their successors, e.g. the

node exactly half-way around the ring).

Pastry nodes keep track of nodes at certain positions relative to their own in their

routing table. These positions are in increasing distance to those nodes that share the

current nodes’ prefix and have a different next digit. In the circular ID-space, these end

up being the nodes one-half revolution (or more) away, between one-quarter and one-half

revolution away, and so on. Nodes also keep track of nodes that are closest to themselves

in the ID-space from both directions in their leaf-set, and of those nodes that are closest in

terms of the proximity-metric in their neighborhood-set.

The leaf-set is the first that is checked while routing a message to see if the requested

key falls within the ownership of one of its entries. If it does not fall within the leaf-set,

the routing table is used to find a node that is closer by at least one digit. This essentially
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Table C.1: Interface of Pastry

Function Description

nodeID=Init(Cred,Appl) Joins a Pastry ring and registers Application with Pastry

route(msg,key) Forwards msg to the closest node of key

bypasses the restriction of only forwarding clockwise around the ring. Once the message is

close enough to the target node, the algorithm is switched from distance-metric to numeric

difference routing.

The neighborhood set is used to help joining nodes find the closest nodes in the proximity

space for their routing table.

The Application has to export the following operations.

C.2 FreePastry

FreePastry is Princeton’s implementation of Pastry’s KBR in Java. It exports Pastry’s API,

as well as the Common API (see Appendix B). In FreePastry, IDs are 160-bit long.

FreePastry defines the entries in its fingertable in base 16. That means that the fin-

gertable has 40 rows with 16 columns each. 40 rows for each digit in the ID, and 16 columns

for each of the 16 possible states of a digit. Each cell contains a list of nodes (if there are

any) that match the first digits of the current node’s ID and differ in the rowth-digit,

Table C.2: Interface that an application using Pastry has to export

Function Description

deliver(msg,key) Delivers msg to the application running on the closest node to

key

forward(msg,key,next) Called while forwarding msg towards key, giving the next hop

newLeafs(LeafSet) Called whenever the LeafSet changes
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having column as the digit. Thus, FreePastry tries to correct 4 bits at a time. If there is

no node in that cell, FreePastry still tries to get closer to the target key by checking all

node IDs for numeric closeness. The node that is absolutely closest in plain numeric space

to the target ID is chosen for routing.

It also includes PAST, which is a DHT built on top of Pastry; SCRIBE, a publish/sub-

scribe system; SplitStream, which is a CDN; and Glacier, another DHT implementation.
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Appendix D

Coral

This appendix gives an overview of Coral and the Kademlia-DHT it uses.

D.1 Kademlia

Kademlia is a DHT that defines its ID-space to be a flat, 160-bit space, that uses a novel

“XOR” distance-metric. It assumes its IDs to be base 2, for simplicity of routing. In

contrast to Pastry it uses the XOR distance-metric, which is symmetric. Thus, it is easier

to visualize the routing algorithm of Kademlia as a tree. Symmetric distance metrics have

the added advantage of learning of peers by passively monitoring the routing traffic because

it comes from both directions, whereas asymmetry inhibits this because forwarded messages

come from the wrong direction.

Because of the fact that Kademlia uses only one algorithm for lookups all the way until

the end, the necessary node state is reduced. For every i out of 0 ≤ i < 160 it keeps a list

called k-bucket with up to k pointers to nodes, which are exactly i bits away. That is, for

each ith k-bucket the first i− 1 bits (the prefix) are the same, and the ith bit is flipped. k

is typically a very small number, like 6.

The k-bucket lists implement a least-recently seen eviction policy, i.e. newer nodes are

purged first, except that live nodes are never removed. This is based on the observation in

Gnutella networks that older nodes are likely to stay longer.

The Kademlia Protocol consists of four RPCs.

PING merely pings a node to see if answers. FIND NODE takes an ID as an argument

and returns the k closest node to that ID known to the called node. FIND VALUE does
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Table D.1: RPC Interface of Kademlia

Function Description

bool=PING() Pings the callee

STORE(key,val) Stores val under key at called node

nodes[]=FIND NODE(ID) Returns up to k known closest nodes for ID

nodes[]=FIND VAL(key) Like FIND NODE, except returns the val

when stored at called node

the same with one exception; if the recipient of FIND VALUE has seen a STORE for that

key, it will return the value instead. STORE stores a value under the key at the recipient.

To store and retrieve (key,value) tuples a Kademlia node needs to find the k closest

nodes to a key. For that, it employs a recursive algorithm as follows. The local node starts

with calling FIND NODE in parallel on the α closest node it knows of, which it picks out of

the appropiate k-bucket. Some of those will return nodes that are closer. Without waiting

for all calls to return, the node will continue to call FIND NODE on the nodes returned by

the first iteration. When the k closest nodes seen so far have all returned without yielding

any closer nodes, the lookup terminates.

For storing the value, the node will then call STORE on those k closest nodes. A

lookup uses FIND VALUE instead of FIND NODE, which will return as soon as it finds a

replication of the value and terminates the lookup.

Because all stored values are soft-state, they must be renewed ever so often. Replication

nodes re-publish values they store every hour. The original owner is required to re-publish

its content every 24 hours, otherwise it will expire after a day. Furthermore, each node will

replicate the content locally after a successful lookup.
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D.2 Coral

Coral-CDN uses its DHT which is a modified Kademlia to store content that its clients

request. Whenever a client requests a file, Coral issues a GET to the DHT and delivers that

content if found in the DHT. The Coral-CDN consists of three parts:

• Coral, the DHT itself;

• WebProxy, the webserver that client browsers issue requests to; and

• DNSProxy, the DNS daemon that resolves “coralized” URLs to the nearest WebProxy.

A URL is coralized by adding the domain-suffix “.nuyd.net:8090” to it. When a browser

tries to resolve the Top Level Domain (TLD) .nuyd.net, the request is sent to the Coral-

DNS-Proxy which tries to map the client’s location to the nearest WebProxy. The answer

returned will cause the browser to connect to the WebProxy on that address and issue its

request. The WeProxy in turn looks up the file in Coral and either returns it if found, or

requests it from the origin server, returns that, and stores it into Coral.

Currently, Coral is implemented in roughly 22.000 lines of C-code, which makes heavy

use of C++ templates. It uses the libasync library, that is part of SFS [42], for asyncronous

IO as well as ONC RPC for remoting.

For added efficiency, Coral makes a few additions to the original Kademlia.

Firstly, in an effort to keep traffic within a local neighborhood, Coral implements so-

called clusters. Coral nodes will automatically partition themselves into clusters according

to some distance-metric in the proximity space. The only currently supported distance-

metric is RTT. A node will attempt to join a cluster when the distance to 90% of the nodes

is below a certain diameter, or threshold. For the thresholds, values of 20, 60, and ∞ ms

were found to be most useful.

All nodes that are members of a cluster will form their own Kademlia DHT. Thus, each

node is a member of as many DHTs as there are cluster-levels. This is globally defined
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and should be set to some small number, for example 3. In each of those DHTs, each node

assumes the same respective ID. Lookup, store, and get operations are augmented by a

level parameter which specifies the target cluster-level for the operation.

When doing a lookup operation, a node will first attempt to find the closest node to the

key in its smallest (level-3) cluster. Since that node has the same ID in the next higher-level

cluster, it can be used as the first hint for that cluster. Consequently, after FIND NODE

in a higher-level cluster returns, a node will continue calling FIND NODE with the level

decreased by one on the last returned (closest) node.

Instead of storing values only once in the global DHT, a publisher has to store it in

each cluster’s DHT it is a member of. Lookups start in the smallest cluster and continue to

travel outwards. This guarantees that the value will be found in the smallest neighborhood

where it is stored, thus keeping traffic from unnecessarily traversing high-latency links.

Secondly, instead of allowing only one value per key, Coral allows multiple values per

key and requires a get to only return a subset of those. This is advantageous because of

the way the web-cache is implemented, Coral has multiple readers and writers for tuples.

The Coral-CDN does not store the actual content of URLs, it only stores pointers to nodes

that have it. Every Coral node that retrieves the content inserts a pointer to itself under

the key of that content. Lookups will return a subset of those nodes, which are possibly

in the smallest neighborhood (level-3 cluster) of the querying node. The authors call this

augmented DHT a Distributed Sloppy Hashtable (DSHT).

D.2.1 libasync

Libasync is built around the insight that heavy threading does not necessarily make an

application faster because of the incurred context switching overhead. This is especially

true in linux environments which do not support light-weight threads at the OS-level. If

everything is run in only one thread instead, the overall performance should benefit. This

design prohibits the use of blocking calls, however. In lieu of using complicated event-

notification techniques, select can be used to wait for an event. Libasync has been built
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to make this process easier.

An application interested in an event on any kind of file descriptor calls libasync with

the descriptor, the event it is interested in, and a callback. As soon as the event takes

place, the callback is called.

D.2.2 ONC RPC

Remote Procedure Call (RPC) was invented in 1976 by Sun and was later adopted and

extended by the ONC foundation. It is a standard for calling procedures remotely, according

to the client/server paradigm. Before it is sent out over the wire, data is transformed into

a common format, known as eXternal Data Representation (XDR). RPC services listen on

random ports above 1024 that are assigned on run-time. To solve the problem of knowing

which service runs on what port, RPC uses the portmapper that listens for queries on the

well-known TCP and UDP port, 111. ONC RPC is described in RFC 1831 [44].

Interfaces are written in an Interface Definition Language (IDL) very similar to C with

the file-suffix “.x.” These files are compiled by “rpcgen” into C files that can be used in

programs to set up the server and client, respectively. They take care of transforming all

data back and forth between XDR. Implementations, as well as the necessary “rpcgen”

programs, exist for other languages such as Java [39] and .NET [7] (commercial).
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Appendix E

PWHN script tutorial

An initial version of PWHN was constructed as a set of python scripts that implement much

of PWHN’s final semantics. This appendix is a tutorial on its usage. Most of this is also

available as a webpage at [32].

E.1 Screenshots

E.1.1 Example 1

Example run with only the Init script given in the directory scripts.

Figure E.1: Example run of a script that emits load averages for each server

The script emits a 4-tuple for each server it is run on, consisting of the number 1 and

the load average. of the uptime command in the form (1, 1min − load, 5m, 15m). This

form gives the loads of each server it is run on.

script The Init script looks like this:
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Listing E.1: Init script for example 1
1 #!/ usr / b in /php −f

<?php

$u = ‘ uptime ‘ ;

$ load = trim ( subs t r ( $u , s t r r p o s ( $u , ’ : ’ )+1)) ;

$va l s = explode ( ( s t rpo s ( $load , ’ , ’ )>0)? ’ , ’ : ’  ’ , $ load ) ;

6 p r i n t f ( " (1 ,% s ,% s ,% s ) " , $va l s [ 0 ] , $va l s [ 1 ] , $va l s [ 2 ] ) ;

?>

It just runs ‘uptime‘, gets the rest of the output after the “:” and splits the numbers at

either “,” or “ ”, depending on which is there. Then it emits the tuple to stdout. It needs

to be executable and thus has an appropriate shebang.

E.1.2 Example 2

To compute the average load over all the servers, the number 1 from example 1 is needed

since the average function is not a prefix funtion. This means that avg(a + b) 6= avg(a) +

avg(b).

Figure E.2: Example run of a script that emits the load average over all the servers

Thus, you need to push the division to the end of the execution into the evaluator. In

the intermediate results, the overall sum of all elements seen so far is carried. To know how

many elements have been seen, each one is emitted with a leading 1 which is summed in

the intermediate results. An example run of the script with all the map, reduce and eval

scripts looks like E.2.

script The Init script looks like E.2.
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Listing E.2: Init script for example 2
#!/ usr / b in /php −f

<?php

3 $u = ‘ uptime ‘ ;

$ load = trim ( subs t r ( $u , s t r r p o s ( $u , ’ : ’ )+1)) ;

$va l s = explode ( ( s t rpo s ( $load , ’ , ’ )>0)? ’ , ’ : ’  ’ , $ load ) ;

p r i n t f ( ’ (1 ,% s ,% s ,% s ) ’ , $va l s [ 0 ] , $va l s [ 1 ] , $va l s [ 2 ] ) ;

?>

The aggregator looks like E.3.

Listing E.3: Aggregate script for example 2
#!/ usr / b in /php −f

<?php

3 f s c a n f (STDIN, " % d \ n " , $ l 1 ) ;

$ f i r s t = f r ead (STDIN, $ l1 ) ;

f r ead (STDIN , 1 ) ;

f s c a n f (STDIN, " % d \ n " , $ l 2 ) ;

$second = f read (STDIN, $ l2 ) ;

8 $v1 = explode ( ’ , ’ , subs t r ( $ f i r s t , 1 , s t r l e n ( $ f i r s t )−2));

$v2 = explode ( ’ , ’ , subs t r ( $second , 1 , s t r l e n ( $second )−2));

p r i n t f ( " (% u ,% f ,% f ,% f ) " ,

( round ( $v1 [0 ]+ $v2 [ 0 ] ) ) ,

( $v1 [1 ]+ $v2 [ 1 ] ) ,

13 ( $v1 [2 ]+ $v2 [ 2 ] ) ,

( $v1 [3 ]+ $v2 [ 3 ] )

) ;

?>

This script takes two runs from Init on stdin, reads them into $first and $second, deletes

the surrounding parentheses and $first and $second on “,”. It then adds all values and emits

a new tuple.

And finally, E.4 is the evaluator.

Listing E.4: Eval script for example 2
#!/ usr / b in /php −f

<?php

$in = trim ( s t r eam get cont en t s (STDIN ) ) ;

4 $v = explode ( ’ , ’ , subs t r ( $in , 1 , s t r l e n ( $ in )−2));

p r i n t f ( " ( % . 4 f , % . 4 f , % . 4 f ) " ,

( $v [ 1 ] / $v [ 0 ] ) ,

( $v [ 2 ] / $v [ 0 ] ) ,

( $v [ 3 ] / $v [ 0 ] )

9 ) ;

?>

This script takes the output of the last reduce run on stdin, deletes the surrounding

parentheses and splits it on “,”. It then divides all fields by the first number and prints
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the output to stdout.

E.2 ManPage

Usage:

NAME

plmr.py - simple map-reduce script with arbitrary executables.

DESCRIPTION

Syncs a file or directory with a remote server and executes init

script remotely using vxargs.

Most of the options are passed directly to vxargs.

For vxargs to work the shell has to know where to find an ssh-agent

that has the right identity added.

SYNOPSIS

plmr.py [OPTIONS] -a <file> -i <file>

OPTIONS

--file=filename, -f file

Sources a file that specifies all options.

Certain options may be overriden on the commandline.

File is in Python syntax and should look like this (default settings):

syncdir = ""

initfile = ""

aggfile = ""

evalfile = ""

outdir = "/tmp/plmr-out"

username = ""

no-sync = 0

synconly = 0

quiet = 0

vxargs = [] #list of single strings to give to vxargs, ex: [ "-a ips.txt" ]

--nosync, -s

If every server is already up to date, syncing can be switched of by

specifying --no-sync to speed up execution.

--synconly, -l

To only sync, on the other hand, without executing, use synconly.

--quiet, -q

Supresses any output including output from vxargs, the only thing written

to stdout is the last result.

Implies -p and -y for vxargs.

--help

Print a summary of the options and exit.

--init=filename, -i file

Specifies the name of the initializer script to run remotely.

If <dir> is not specified only this file will be synced.
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--agg=filename, -g file

Specifies the name of the aggregator script.

If <dir> is specified this file will be assumed to be in <dir>.

--eval=filename, -e file

Specifies the name of the evaluator script.

If <dir> is specified this file will be assumed to be in <dir>.

--dir=dirname, -D dir

The directory to syncronise. If specified all files have to be in that directory.

--user=username, -u username

The username to use for remote login, if different from current logged in user.

--version

Display current version and copyright information.

Options passed to vxargs

--max-procs=max-procs, -P max-procs

Run up to max-procs processes at a time; the default is 30.

--randomize, -r

Randomize the host list before all execution.

--args=filename, -a filename

The arguments file.

--output=outdir, -o outdir

output directory for stdout and stderr files

The default value is specified by the environment variable VXARGS_OUTDIR.

If it is unspecified, both stdout and stderr will be redirected

to a temp directory.

Note that if the directory existed before execution, everything

inside will be wiped without warning.

--timeout=timeout, -t timeout

The maximal time in second for each command to execute. timeout=0

means infinite. 0 (i.e. infinite) is the default value. When the time is up,

vxargs will send signal SIGINT to the process. If the process does not

stop after 2 seconds, vxargs will send SIGTERM signal, and send SIGKILL

if it still keeps running after 3 seconds.

--noprompt, -y

Wipe out the outdir without confirmation.

--no-exec, -n

Print the commands that would be executed, but do not execute them.

--plain, -p

Don’t use curses-based output, but plain output to stdout

instead. It will be less exciting, but will do the same job

effectively.

By default, plmr.py uses the curses-based output from vxargs.

SCRIPTS
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Initialiser

The init executable is run remotely.

It has to be an executable file, but could also be a script that is

executable and has a working shebang.

It is expected to write its output to stdout.

An output could look like this, for example:

(1,3.0,2.0)

If this is the only script given, the output of every run will be printed

to stdout seperated by newlines.

Aggregator

The agg executable is run locally.

It has to be an executable file, but could also be a script that is

executable and has a working shebang.

It will receive the outputs of 2 init runs on stdin and is expected

to write one aggregate to stdout.

The inputs will both start with the exact length in bytes, written

in ASCII on a line by itself.

Then the input followed by a newline which is not counted as part of the input.

The input could look like this, for example:

11\n

(1,3.0,2.0)\n

12\n

(1,1.65,0.8)\n

Then the output could look like this:

(2,4.65,2.8)

If no aggregator is given, the input to the evaluator will be all outputs

of the init script,

seperated by the lengths in ASCII on lines by themselves like the input to

the aggregator,

except possibly consisting of more than two records.

Evaluator

The eval executable is run locally.

It has to be an executable file, but could also be a script that is

executable and has a working shebang.

It will receive the last aggregate value on stdin and is expected to

deliver the final result to stdout.

Continuing the above example, the final result for the input:

(2,4.65,2.8)

could be:

(2.325,1.4)

If no evaluator is given, the output of the last aggregator will be

written to stdout.

EXAMPLE

Suppose the following conditions hold (the files have the stated contents).

$ cat ips.txt

192.41.135.218

#planetlab1.csg.unizh.ch

129.108.202.10

#planetlab1.utep.edu

131.175.17.10

#planetlab2.elet.polimi.it

$ cat scripts/init.php
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#!/usr/bin/php -f

<?php

$u = ‘uptime‘;

$load = trim(substr($u,strrpos($u,":")+1));

$vals = explode( (strpos($load,",")>0)?",":" ",$load);

printf("(1,%s,%s,%s)",$vals[0],$vals[1],$vals[2]);

?>

$ cat scripts/agg.php

#!/usr/bin/php -f

<?php

fscanf(STDIN, "%d\n", $l1);

$first = fread(STDIN,$l1);

fread(STDIN,1);

fscanf(STDIN, "%d\n", $l2);

$second = fread(STDIN,$l2);

$v1 = explode(",",substr($first,1,strlen($first)-2));

$v2 = explode(",",substr($second,1,strlen($second)-2));

printf("(%u,%f,%f,%f)",

(round($v1[0]+$v2[0])),

($v1[1]+$v2[1]),

($v1[2]+$v2[2]),

($v1[3]+$v2[3])

);

?>

$ cat scripts/eval.php

#!/usr/bin/php -f

<?php

$in = trim(stream_get_contents(STDIN));

$v = explode(",",substr($in,1,strlen($in)-2));

printf("(%.4f,%.4f,%.4f)",

($v[1]/$v[0]),

($v[2]/$v[0]),

($v[3]/$v[0])

);

?>

Then executing

./plmr.py.py -D scripts/ -i init.php -g agg.php -e eval.php -a ips.txt

will output something similar to

exit code 0: 3 job(s)

total number of jobs: 3

exit code 0: 3 job(s)

total number of jobs: 3

Agg((1,2.57, 2.64, 2.64) + (1,1.73, 1.84, 1.84))

= (2,4.300000,4.480000,4.480000)

Agg((2,4.300000,4.480000,4.480000) + (1,1.55, 1.40, 1.42))

= (3,5.850000,5.880000,5.900000)

Eval((3,5.850000,5.880000,5.900000)) = (1.9500,1.9600,1.9667)
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Appendix F

CD contents

Contents of the included CD-ROM.

The folder “/tex” is the root of all tex sources. The main files for the thesis as well

as the makefile is in the folder 2006-vitus-pwhn-thesis, all other included folders contain

various files that the thesis includes. The root contains a modified version of the acronym

package’s acronym.sty that allows the possessive form of acronyms to be used by typing “

aco{...}” in the source. This adds an “ś” to the output. Images are separated in figures,

screenshots, logos and graphs.

“/src” contains all sources of PWHN as java files. The Namespace utep.plmr.* is in the

folder “/utep.plmr” its subfolders. Helper functions for graphing of PathInfos are in “gra-

pher”, “jfree” contains my subclassed classes for the JfreeChart library, and server contains

all server classes. “/thesis-scripts” contains all example scripts from section 5.3. “/Fern”

contains some example log files from fern and the script used to collect and aggregate these

logs.

“/dist” contains the complete binary distribution. All necessary “.jar” Files are included

in the respective archives. “PLMR-server” contains the server jar, as well as the parameter

file for FreePastry which enables debugging. Also included are sample output files that

the server produces while running, in “/logs”. These are the log of the fingertable (every

minute), the stdout output of the server, and the debugging output produced by FreePastry

itself. “start-plmr.sh” and “stop-plmr.sh” are shell scripts to start and stop the server.

They have to be executed in the home directory, and can be used with the PWHN client.

Start only starts the server if not already running, allows specifying a bootstrap IP and

port which defaults to planetlab1.utep.edu:9091. The client includes two sample runs with
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fictitious data to simply test the charting functions. These do not include any PathInfo

annotations.

“/javadoc” contains the complete javadoc for the whole project. “pwhn-site” is a copy

of the website created for the PLMR project for PlanetLab. To be able to see all the pages,

it has to be parsed by PHP Hypertext Preprocessor (PHP), which is why it has to be put

into a webservers cgi directory, for example into apache’s wwwroot. “geshi” is a source

code highlighter for PHP. It is released under the General Public License (GPL).

\

\tex - root of tex sources

acronym.sty - modified version of acronym package

Makefile - makes all papers

\2006-vitus-pwhn-thesis - thesis

Makefile - makes the thesis.pdf file

\2006-dht-pp_soat_i-techreport - includes for data structures section (and tech report)

\2006-p2pmon-survey - includes for survey of related sys section (and survey)

\bib - includes for bibliography, moacros & acros

\figs - figures

\graphs - graphs

\img - logos

\screens - screenshots

\src - source of PWHN

\utep

\plmr - client-files in NS utep.plmr

plmr.uml - UML diagram in XML format (from Eclipse UML)

\jfree - JfreeChart classes

\server - NS .server (classes for server)

server.uml - UML diagram of server in XML format

\messages - NS .server.messages (messages for serialisation)

\thesis-scripts

\3-8 - script sets 1-4

\fern

142



globalDist - python global Distribution 3-in-1 file for Fern

autoDict.py - auto dictionary needed for globalDict

\logs - some example logs from Fern

\dist

licence-LGPL.txt - required LGPL licence

FreePatry License.txt - FP’s license

\PWHN-1.0 - client: complete binary dist.

PWHN-1.0.jar - client GUI

vxargs.py - needed vxargs script

PLMR.py - PWHN script version

jcommon-1.0.4.jar - JCommon lib for JFreeChart

jfreechart-1.0.1.jar - JFreeChart lib

jgraph.jar - JGraph lib

FreePastry.jar - also needed for client

\PLMR-server-1.0 - server: complete binary dist.

FreePastry-20b.jar - FreePastry jar library

PLMR-server-1.0.jar - the server jar file

freepastry.params - parameter file for FP (enables debugging)

start-plmr.sh - script to start the server on current node

stop-plmr.sh - script to stop

\logs - sample output of server

fingertable.log - log of FP’s fingertable

plmr-server.out - stdout output of server

pwhn_*.fp_log - debugging output of FP (FINER)

\javadoc - the javadoc for whole NS utep.plmr

\pwhn-site - copy of PLMR-project website

\geshi - source code highlighter for PHP

\plmr - PLMR website root

\files - all downloadable files

\img - images
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\inc - include files that contain all subpages
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