

 PlanetenWachHundNetz: Locality-Aware MapReduce for Peer-to-Peer
 Vitus Lorenz-Meyer, Eric Freudenthal

Robust Systems Group

Motivation
• Efficient reduction of data from self-

organized (P2P) sources

Problem
• Dynamic membership

• Static tree (for parallel prefix)
inappropriate

Problems w/ Known Techniques
• Do not localize network traffic
• Branching factor not controlled
• State lost when parent nodes fail/leave
• Details on right side of figure

Our Goals
• Exploit locality, minimize remote

communication
• Efficient parallelism: Control of

branching factor
• Minimal state-loss when nodes

enter/leave
• Self-healing continuous queries

Implementation
• Left-tree

• Node role determined by key
• Locality/clustering: Coral or Oasis

Other Approaches
From distributed databases

Key-based Tree
Routing based on node keys
• Children of node n with key k are
nodes with keys closest to k with n-1
prefix bits in common with k
• Node n is its own child!

Finger-table based tree
• Tree edges selected from nodes
finger tables (towards query root).

University of
Texas at El Paso

Non-existent node 001 (A)

Message arrives
at closest node 000 (B)

000 takes the role
of its parent 001

Message ends up at self:
No more nodes -> discard

Paths to 111

Aggregation tree

Prefix tree

Resulting Aggre-
gation tree

Stochastically
balanced

Non-optimized
fan-out!

Locality-aware Clustering

Coral (locality-aware DsHT)
• Coral partitions its members in

clusters based on connection
latency

Aggregation tree at each
cluster

• Build cluster aggregation trees
• A single member of a cluster-tree

serves as aggregation
representative

Challenges
• Choosing sub-cluster

representatives
• Constructing aggregation tree for

sub-cluster
• Avoiding inefficient setup broadcast

Overview
• Associate aggregation tree with a operation-specific root key.
Characteristics
• Rooted at host whose key is closest to root key

• One tree per query, distributes load over all nodes for multiple
queries at a time

• Nodes that are roots of sub-trees are their own left-children all the
way down to their appropriate place among leaves.

• Each node is leaf and root of the sub-tree at depth d if it has the d’th
bit of root-ID flipped; node may also substitute for missing parents.

• Set of nodes and MR-specific root-key fully defines a unique tree (complete
knowledge not required: lookup parent, sibling, children)

•Not locality aware!
•Only 1 global tree.

•Unique tree for every query
•Locality awareness from DHT
•but does not force locality
•Challenge: what to do if nodes
enter/leave

Building the Tree
Send build-message to all siblings down the tree
Each node forwards build-message to all its siblings all the way down
• Recall that node is its own child: siblings include its children!

Non-existing parent
• Closest node fulfills its role
• Therefore, search for parent will discover this node
Non-existing child
• If child not in DHT, then node is a leaf
Finding children
• Use DHT

Collecting data
• Each node reduces messages from children, sends result(s) to parent

Challenges Approach
• Find children DHT lookup
• Find parent DHT lookup
• Establishing new tree at exit/departure DHT lookup (key-space determines topology)

MapReduce (Google)

Generalized Parallel Prefix
• Associative & communitive

operations mapped to an
aggregation tree

• Google‘s map-reduce framework
 Data is mapped to low-dimensional

tuples
 Tuples are recursively combined

using an associative reduction
algorithm that emits a (summary)
tuple

Example:
• Counting occurrence of a particular

word in a document:
 Provide map algorithm that

emits the tuple ‘(1)’ for every
occurrence

 Provide a reduce algorithm
that sums these tuples

Continuous Queries
Maintaining tree consistency under churn

• Each node periodically checks roles of self and immediate relatives
• Churn (membership change) must result in tree-node role change

• Change propagated by DHT finger tables

Challenges Approach
• What roles to check when periodically check (lookup) self, children,

 parent only when its assuming role
• Who notifies who parent → child, old → new

Goal: Efficient Aggregation Tree
Our Solution: Key-based MapReduce (KMR)

Finding nodes
n = key of some node
t = root-id of aggregation tree
π = n’s position among leaves (from left)
 π = n ⊕ t
 key of n’s parent at height h: π / 2h ⊕ t

To find parent, n searches for smallest height such
that parent is in the tree.

