
The RPC abstraction

• Procedure calls well-understood mechanism
- Transfer control and data on single computer

• Goal: Make distributed programming look same
- Code libraries provide APIs to access functionality

- Have servers export interfaces accessible through local APIs

• Implement RPC through request-response
protocol

- Procedure call generates network request to server

- Server return generates response



Interface Definition Languages

• Idea: Specify RPC call and return types in IDL

• Compile interface description with IDL compiler.
Output:

- Native language types (e.g., C/Java/C++ structs/classes)

- Code to marshal (serialize) native types into byte streams

- Stub routines on client to forward requests to server

• Stub routines handle communication details
- Helps maintain RPC transparency, but

- Still had to bind client to a particular server

- Still need to worry about failures



Intro to SUN RPC

• Simple, no-frills, widely-used RPC standard
- Does not emulate pointer passing or distributed objects

- Programs and procedures simply referenced by numbers

- Client must know server—no automatic location

- Portmap service maps program #s to TCP/UDP port #s

• IDL: XDR – eXternal Data Representation
- Compilers for multiple languages (C, java, C++)



Sun XDR

• “External Data Representation”
- Describes argument and result types:

struct message {

int opcode;

opaque cookie[8];

string name<255>;

};

- Types can be passed across the network

• Libasync rpcc compiles to C++
- Converts messages to native data structures

- Generates marshaling routines (struct ↔ byte stream)

- Generates info for stub routines



Basic data types

• int var – 32-bit signed integer
- wire rep: big endian (0x11223344 → 0x11, 0x22, 0x33, 0x44)

- rpcc rep: int32 t var

• hyper var – 64-bit signed integer
- wire rep: big endian

- rpcc rep: int64 t var

• unsigned int var, unsigned hyper var

- wire rep: same as signed

- rpcc rep: u int32 t var, u int64 t var



More basic types

• void – No data
- wire rep: 0 bytes of data

• enum {name = constant,. . .} – enumeration
- wire rep: Same as int

- rpcc rep: enum

• bool var – boolean
- both reps: As if enum bool {FALSE = 0, TRUE = 1} var



Opaque data

• opaque var[n] – n bytes of opaque data
- wire rep: n bytes of data, 0-padded to multiple of 4
opaque v[5]→ v[0], v[1], v[2], v[3], v[4], 0, 0, 0

- rpcc rep: rpc opaque<n> var

- var[i]: char & – ith byte
- var.size (): size t – number of bytes (i.e. n)
- var.base (): char * – address of first byte
- var.lim (): char * – one past last



Variable length opaque data

• opaque var<n> – 0–n bytes of opaque data
- wire rep: 4-byte data size in big endian format, followed by
n bytes of data, 0-padded to multiple of 4

- rpcc rep: rpc bytes<n> var

- var.setsize (size t n) – set size to n (destructive)
- var[i]: char & – ith byte
- var.size (): size t – number of bytes
- var.base (): char * – address of first byte
- var.lim (): char * – one past last

• opaque var<> – arbitrary length opaque data
- wire rep: same

- rpcc rep: rpc bytes<RPC INFINITY> var



Strings

• string var<n> – string of up to n bytes
- wire rep: just like opaque var<n>

- rpcc rep: rpc str<n> behaves like str, except cannot be
NULL, cannot be longer than n bytes

• string var<> – arbitrary length string
- wire rep: same as string var<n>

- rpcc rep: same as string var<RPC INFINITY>

• Note: Strings cannot contain 0-valued bytes
- Should be allowed by RFC

- Because of C string implementations, does not work

- rpcc preserves “broken” semantics of C applications



Arrays

• obj t var[n] – Array of n obj ts
- wire rep: n wire reps of obj t in a row

- rpcc rep: array<obj t, n> var; as for opaque:
var[i], var.size (), var.base (), var.lim ()

• obj t var<n> – 0–n obj ts
- wire rep: array size in big endian, followed by that many

wire reps of obj t

- rpcc rep: rpc vec<obj t, n> var; var.setsize (n),
var[i], var.size (), var.base (), var.lim ()



Pointers
• obj t *var – “optional” obj t

- wire rep: same as obj t var<1>: Either just 0, or 1 followed
by wire rep of obj t

- rpcc rep: rpc ptr<obj t> var

- var.alloc () – makes var behave like obj t *

- var.clear () – makes var behave like NULL
- var = var2 – Makes a copy of *var2 if non-NULL

• Pointers allow linked lists:
struct entry {

filename name;

entry *nextentry;

};

• Not to be confused with network object pointers!



Structures

struct type {

type_A fieldA;

type_B fieldB;

...

};

• wire rep: wire representation of each field in order

• rpcc rep: structure as defined



Discriminated unions

union type switch (simple_type which) {

case value_A:

type_A varA;

...

default:

void;

};

• simple type must be [unsigned] int, bool, or enum

• Wire representation: wire rep of which, followed
by wire rep of case selected by which.



Discriminated unions: rpcc representation

struct type {

simple_type which;

union {

union_entry<type_A> varA;

...

};

};

• void type::set which (simple type newwhich)

sets the value of the discriminant

• varA behaves like type A * if which == value A

• Otherwise, accessing varA causes core dump
(when using dmalloc)



Example: fetch and add server

struct fadd_arg {

string var<>;

int inc;

};

union fadd_res switch (int error) {

case 0:

int sum;

default:

void;

};



RPC program definition

program FADD_PROG {

version FADD_VERS {

void FADDPROC_NULL (void) = 0;

fadd_res FADDPROC_FADD (fadd_arg) = 1;

} = 1;

} = 300001;

• RPC library needs information for each call
- prog, vers, marshaling function for arg and result

• rpcc encapsulates all needed info in a struct
- Lower-case prog name, numeric version: fadd prog 1



Client code
fadd_arg arg; fadd_res res;

void getres (clnt_stat err) {

if (err) warn << "server: " << err << "\n"; // pretty-prints

else if (res.error) warn << "error #" << res.error << "\n";

else warn << "sum is " << *res.sum << "\n";

}

void start () {

int fd;

/* ... connect fd to server, fill in arg ... */

ref<axprt> x = axprt_stream::alloc (fd);

ref<aclnt> c = aclnt::alloc (x, fadd_prog_1);

c->call (FADDPROC_FADD, &arg, &res, wrap (getres));

}



Server code
qhash<str, int> table;

void dofadd (fadd_arg *arg, fad_res *res) {

int *valp = table[arg->var];

if (valp) {

res.set_error (0);

*res->sum = *valp += arg->inc;

} else

res.set_error (NOTFOUND);

}

ptr<asrv> s;

void getnewclient (int fd) {

s = asrv::alloc (axprt_stream::alloc (fd), fadd_prog_1,

wrap (dispatch));

}



Server dispatch code
void dispatch (svccb *sbp) {

if (!sbp) { s = NULL; return; }

switch (sbp->proc ()) {

case FADDPROC_NULL:

sbp->reply (NULL);

break;

case FADDPROC_FADD:

fadd_res res;

dofadd (sbp->template getarg<fadd_arg> (), &res);

sbp->reply (&res);

break;

default:

sbp->reject (PROC_UNAVAIL);

}

}



NFS3: File handles

struct nfs_fh3 {

opaque data<64>;

};

• Server assigns an opaque file handle to each file
- Client obtains first file handle out-of-band (mount protocol)

- File handle hard to guess – security enforced at mount time

- Subsequent file handles obtained through lookups

• File handle internally specifies file system / file
- Device number, i-number, generation number, . . .

- Generation number changes when inode recycled



File attributes

struct fattr3 { specdata3 rdev;

ftype3 type; uint64 fsid;

uint32 mode; uint64 fileid;

uint32 nlink; nfstime3 atime;

uint32 uid; nfstime3 mtime;

uint32 gid; nfstime3 ctime;

uint64 size; };

uint64 used;

• Most operations can optionally return fattr3

• Attributes used for cache-consistency



Lookup
struct diropargs3 { struct lookup3resok {

nfs_fh3 dir; nfs_fh3 object;

filename3 name; post_op_attr obj_attributes;

}; post_op_attr dir_attributes;

};

union lookup3res switch (nfsstat3 status) {

case NFS3_OK:

lookup3resok resok;

default:

post_op_attr resfail;

};

• Maps 〈directory, handle〉 → handle

- Client walks hierarch one file at a time

- No symlinks or file system boundaries crossed



Read
struct read3args { struct read3resok {

nfs_fh3 file; post_op_attr file_attributes;

uint64 offset; uint32 count;

uint32 count; bool eof;

}; opaque data<>;

};

union read3res switch (nfsstat3 status) {

case NFS3_OK:

read3resok resok;

default:

post_op_attr resfail;

};

• Offset explicitly specified (not implicit in handle)

• Client can cache result



Data caching

• Client can cache blocks of data read and written

• Consistency based on times in fattr3

- mtime: Time of last modification to file

- ctime: Time of last change to inode
(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

• Algorithm: If mtime or ctime changed by another
client, flush cached file blocks



NFS3 Write arguments

struct write3args { enum stable_how {

nfs_fh3 file; UNSTABLE = 0,

uint64 offset; DATA_SYNC = 1,

uint32 count; FILE_SYNC = 2

stable_how stable; };

opaque data<>;

};



Write results
struct write3resok { struct wcc_attr {

wcc_data file_wcc; uint64 size;

uint32 count; nfstime3 mtime;

stable_how committed; nfstime3 ctime;

writeverf3 verf; };

}; struct wcc_data {

wcc_attr *before;

post_op_attr after;

};

union write3res switch (nfsstat3 status) {

case NFS3_OK:

write3resok resok;

default:

wcc_data resfail;

};



Data caching after a write

• Write will change mtime/ctime of a file
- “after” will contain new times

- Should cause cache to be flushed

• “before” contains previous values
- If before matches cached values, no other client has

changed file

- Okay to update attributes without flushing data cache



Write stability

• Server write must be at least as stable as requested

• If server returns write UNSTABLE
- Means permissions okay, enough free disk space, . . .

- But data not on disk and might disappear (after crash)

• If DATA SYNC, data on disk, maybe not attributes

• If FILE SYNC, operation complete and stable



Commit operation

• Client cannot discard any UNSTABLE write
- If server crashes, data will be lost

• COMMIT RPC commits a range of a file to disk
- Invoked by client when client cleaning buffer cache

- Invoked by client when user closes/flushes a file

• How does client know if server crashed?
- Write and commit return writeverf3

- Value changes after each server crash (may be boot time)

- Client must resend all writes if verf value changes



FFS: Back in the 80s. . .

• Disks spin at 3,600 RPM
- 17 ms/Rotation (vs. 4 ms on fastest disks today)

• Fixed # sectors/track (no zoning)

• Head switching free (?)

• Requests issued one at a time
- No caching in disks

- Head must pass over sector after getting a read

- By the time OS issues next request, too late for next sector

• Slower CPUs, memory
- Noticeable cost for block allocation algorithms



Original Unix file system

• Each FS breaks partition into three regions:
- Superblock (parameters of file system, free ptr)

- Inodes – type/mode/size + ptr to data blocks

- File and directory data blocks

• All data blocks 512 bytes

• Free blocks kept in a linked list



Inodes

. . .

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr



Problems with original FS

• FS never transfers more than 512 bytes/disk access

• After a while, allocation essentially random
- Requires a random seek every 512 bytes of file data

• Inodes far from both directory data and file data

• Within a directory, inodes not near each other

• Usability problems:
- File names limited to 14 characters

- No way to update file atomically & guarantee existence
after crash



Fast file system

• New block size must be at least 4K
- To avoid wasting space, use “fragments” for ends of files

• Cylinder groups avoid spread inodes around disk

• Bitmaps replace free list

• FS reserves space to improve allocation
- Tunable parameter, default 10%

- Only superuser can use space when over 90% full



FFS superblock

• Contains file system parameters
- Disk characteristics, block size, CG info

- Information necessary to get inode given i-number

• Replicated once per cylinder group
- At shifting offsets, so as to span multiple platters

- Contains magic to find replicas if 1st superblock dies

• Contains non-replicated “summary info”
- # blocks, fragments, inodes, directories in FS

- Flag stating if FS was cleanly unmounted



Cylinder groups

• Groups related inodes and their data

• Contains a number of inodes (set when FS created)
- Default one inode per 2K data

• Contains file and directory blocks

• Contains bookkeeping information
- Block map – bit map of available fragments

- Summary info within CG – # free inodes, blocks/frags, files,
directories

- # free blocks by rotational position (8 positions)



Inode allocation

• Allocate inodes in same CG as directory if possible

• New directories put in new cylinder groups
- Consider CGs with greater than average # free inodes

- Chose CG with smallest # directories

• Within CG, inodes allocated randomly (next free)
- Would like related inodes as close as possible

- OK, because one CG doesn’t have that many inodes



Fragment allocation

• Allocate space when user writes beyond end of file

• Want last block to be a fragment if not full-size
- If already a fragment, may contain space for write – done

- Else, must deallocate any existing fragment, allocate new

• If no appropriate free fragments, break full block

• Problem: Slow for many small writes
- (Partial) soution: new stat struct field st blksize

- Tells applications file system block size

- stdio library can buffer this much data



Block allocation

• Try to optimize for sequential access
- If available, use rotationally close block in same cylinder

- Otherwise, use block in same CG

- If CG totally full, find other CG with quadratic hashing

- Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
- Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
- But large extents in each CGs, so sequential access doesn’t

require many seeks



Directories

• Inodes like files, but with different type bits

• Contents considered as 512-byte chunks

• Each chunk has direct structure(s) with:
- 32-bit inumber

- 16-bit size of directory entry

- 8-bit file type (NEW)

- 8-bit length of file name

• Coalesce when deleting
- If first direct in chunk deleted, set inumber = 0

• Periodically compact directory chunks



Updating FFS for the 90s

• No longer want to assume rotational delay
- With disk caches, want data contiguously allocated

• Solution: Cluster writes
- FS delays writing a block back to get more blocks

- Accumulates blocks into 64K clusters, written at once

• Allocation of clusters similar to fragments/blocks
- Summary info

- Cluster map has one bit for each 64K if all free

• Also read in 64K chunks when doing read ahead



Dealing with crashes

• Suppose all data written asynchronously

• Delete/truncate a file, append to other file, crash
- New file may reuse block from old

- Old inode may not be updated

- Cross-allocation!

- Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash
- Inode points to indirect block

- But indirect block may contain garbage



Ordering of updates

• Must be careful about order of updates
- Write new inode to disk before directory entry

- Remove directory name before deallocating inode

- Write cleared inode to disk before updating CG free map

• Solution: Many metadata updates syncrhonous
- Of course, this hurts performance

- E.g., untar much slower than disk b/w

• Note: Cannot update buffers on the disk queue



Fixing corruption – fsck
• Summary info usually bad after crash

- Scan to check free block map, block/inode counts

• System may have corrupt inodes (not simple crash)
- Bad block numbers, cross-allocation, etc.

- Do sanity check, clear inodes with garbage

• Fields in inodes may be wrong
- Count number of directory entries to verify link count, if no

entries but count 6= 0, move to lost+found

- Make sure size and used data counts match blocks

• Directories may be bad
- Holes illegal, . and .. must be valid, . . .

- All directories must be reachable


