Detectlt: A Peer-to-Peer Plagiarism Detection System

Elif Tosun, Ben Wellington
Department of Computer Science
Courant Institute, NYU

May 7, 2003

Abstract

In today’s society, plagiarism is a big issue in academic and professional environments. Many
copy detection systems have been proposed to solve this problem, but they fall short in providing
a fault tolerant, scalable solution that respects intellectual property. In this paper, we present
“Detectlt”, a peer-to-peer scalable plagiarism detection system. It is built on top of the Tapestry
framework and uses a fingerprinting technique to detect parts of documents that are similar.
Our results show that average the turnaround time is less than .75 seconds for a query document
of 10,000 characters.

1 Introduction

In today’s wired society, the act of plagiarism takes less effort then it did just decades ago. A
plagiarist doesn’t even have to go through the effort of rewriting. With a simple “copy and paste”
on a computer or on the Internet, it is possible to copy entire documents in just a few mouse clicks.
In fact, recent studies show that in some college classes, the average plagiarism rate is as high as
17 % [2]

Currently, there are several pay sites on-line that offer plagiarism detection. We have found
several problems with these sites. Firstly, these are fee-based services! This makes the widespread
use of these services unattractive. Secondly, if different professors in one university use differing
services, they will not detect copies within the same school system. Lastly, storing students’ papers
in an on-line database could be considered a violation of a student’s intellectual property, as the
documents are essentially handed over to a third party.

For applications such as plagiarism detection, the ideal solution would involve keeping track of
all documents written all over the world so that when a new submission is made, one could check
the similarities between the query document and all the other documents in the database. The
extent of the ideal solution is due of the nature of the problem. That is, the more the users, the
more effective the results are. However, the amount of space required and the time for searching
such a huge database as well as maintaining such a database with many updates a day makes this
solution impossible to be employed by some software running on a single machine. Another problem
with this approach is that it leaves the main server open to attack, since that server constitutes
a single point of failure. This is actually one of the problems with most of the current systems.
The above reasons make this problem very suitable for a distributed system based solution, where
each user runs a copy of the distributed software that keeps track of all the papers that have been
entered into the system by all the users, possibly worldwide.

Detectlt is a peer-to-peer system that approaches the problem in this direction. It is built
on top of the Tapestry API, which is made to be fault tolerant over a wide area of distribution.
This approach is attractive as there is no central database storing students’ papers. The teachers
themselves have the only copy of the paper. However, some crucial information that would be used
in similarity detection, called fingerprints (see Section 3) is stored in the system that every user has
access to. When a paper is deemed to be highly similar to another one that is in the system, the
user is given a professors id, and a paper id. He/she can then contact the professor that originally
submitted the paper, and retrieve the document using the paper id.

2 Background

Our contribution is an implementation of a new application to an existing system which is ex-
plained in full detail in [15]. Although the application to plagiarism detection has been strongly
suggested in [15] we are not aware of another implementation of a fully decentralized peer-to-peer
plagiarism/copy detection system. In this section, we briefly explain the underlying structures that
our application is based on.

The design of this system consists of several layers. The lowest layer in the hierarchy is Tapestry,
a peer-to-peer overlay location and routing infrastructure described in [14]. Above that is the “Ap-
proximate Text Addressing” (ATA) layer described in [15]. Our application DetectIt is implemented
on top of this layer. The following sections provide brief explanations of each layer to make the
reader familiar with the background. For further details the reader is referred to the papers cited
in each section.

2.1 Tapestry

Tapestry is one of many peer-to-peer overlay location and routing infrastructures available today
such as Pastry [8], Chord [12] and CAN [7]. Our design choice favored Tapestry due to the fact
that a very crucial layer of our system, the “Approximate Text Addressing” layer extends the
implementation of Tapestry, although ATA could be built on other such infrastructures with few
modifications as suggested in [15].

The idea behind Tapestry routing is point-to-point links based on matching digits in the destina-
tion ID and the current node ID. This is maintained through the use of routing tables at each node
called “neighborhood maps” that consists of several levels. Each level corresponds to a matching
suffix up to digit position. As the example in [14] suggests, the 9th entry in the 4th level of some
node with ID 325AE is the closest node in network distance that ends in 95AE. This organization
of point-to-point linking supports a maximum of logarithmic number of hops. As a side note, to
support dynamic node insertion each node also keeps a back-pointer list that points to nodes that
it is referred to as a neighbor.

Tapestry locates objects stored in the system in the following way: When Tapestry starts up
each server “publishes” all objects that are stored within that server. Publishing consists of routing
a message to a root of the object. Tapestry maintains several roots per object in order to support
fault tolerance. Roots are defined by some hash function called on the object ID and a global
sequence of “salt” values to allow multiple roots. At each hop of this publish message, the server
location information is stored as a mapping in the form <obj ID, serv ID>. Thus, during a location
query, a message for a given object is first directed to one of its roots. If at any hop towards the
root a mapping of the above form is found, the message gets redirected - this time towards the
server of the object.

A tapestry network is first initiated by a federation node and a set of static nodes. As a side
note, the term “node” here can be a different machine or different ports on the same machine. The
federation node awaits to be contacted by a number of static nodes defined in a configuration file.
Once it hears the signal from all static nodes, it sends the information about all other nodes to each
of the participating nodes. Then the nodes sync among themselves, and the federation node is of
no use any longer. From this point on, any other Tapestry node that defines itself as a “dynamic”
node can insert itself into the network based on the dynamic insertion algorithms explained in [14]
as long as it knows at least one “gateway node” in the network. Note that any node in the system
can act as a gateway.

2.2 ATA (Approximate Text Addressing)

In infrastructures such as Tapestry, one cannot perform a search based on general characteristics
of an object. In Tapestry, each object receives a globally unique identifier(GUID) and the search
is conducted on the set of GUIDs. However, in our case instead of just a name for an object, we
want to perform a search based on the contents of a given query document. Although this concept
is not supported in Tapestry, there exists a middle layer called “Approximate Distribute Object
Location and Routing (ADOLR)” implemented by Zhou et al. [15] that performs the necessary
translation between what the application needs and what Tapestry supports. Although ADOLR is
a general purpose layer, the authors of [15] provide the implementation for a specific use, namely
“Approximate Text Addressing (ATA)” that allows searches on properties of similar documents,
which is exactly what our application needs. Here, we briefly explain the mechanism behind ATA.

ATA allows searches within the system to be performed on a set of values rather than just one
GUID. The set of values correspond to the fingerprints that define the document(See Sec. 3). An
object is stored in the network for each of the fingerprints in a given set. This object stores the
GUIDs of all other documents whose set of fingerprints include the fingerprint corresponding to the
object. When a new document is to be added to the system, first the document GUID is published.
Then each fingerprint is published either by having the GUID of the document appended to the
GUID list of the corresponding fingerprint object or creating a new fingerprint object with a list
that contains only the GUID of the new document, depending on whether the fingerprint object
already existed in the system or not.

Given this, the ATA search for a query document is based on the following: First, the objects
corresponding to each of the fingerprints in the fingerprint set is searched within the system. Then
the document GUID that appears in more than T lists is used to route messages to that document
where T' is an adjustable threshold for matching fingerprints.

3 Fingerprints

A fingerprint is fundamentally just a set of characters of a fixed length n. If two documents have the
same n characters in a sequence, than they will both share the same fingerprint representing those
n characters. More accurately, a single fingerprint is the hash of one of these sets of characters.
We hash each fingerprint to a single 128 bit number, and then keep that number to represent the
print. This obviously makes more sense than keeping the original character sequence, as it takes
less space and is easier to work with.

Essentially, we are interested in finding documents that share many fingerprints. Over all, we
would like to be able to detect files which are as little as 25% similar. So, which fingerprints should
be compared in the two documents?

An immediate idea is to take every set of n consecutive characters of one file, and compare it
to every n character segment of another file. While this approach would provide the detector with
the most information, it runs in n? time. And for two 10 page papers with 20,000 characters, that’s
400,000,000 comparisons! This is obviously too expensive.

Therefore, it is clear that it’s not possible to use every fingerprint of two documents to compare
them. We need to take a subset of both sets of fingerprints to make the task feasible.

One approach is to take only a segment of the two papers and compare fingerprints from those
segments. Then modifications on that segment will significantly reduce any chance of finding
similarity, even if the rest of the two documents are identical. Similarly, one could just chose
f random fingerprints from each of the documents to compare. But, consider the case where
the query document is of length 10,000, and the size of fingerprints is 50. The probability that a
particular fingerprint will be selected is 10/10,000, or about 1/1000. Then the probability of the file
being matched with itself is 1/1000, a bad probability considering the two documents are identical.
Therefore, it is important to find a selection procedure that takes similar kinds of fingerprints from
similar documents.

The approach we use here takes every possible n bit fingerprint of a file, and keeps a small subset
of these, based on their values. Detectlt choses to keep only those fingerprints which are divisible
by 256. This would keep less than .5 percent of the fingerprints in a 10,000 character document[13].
Reducing the number of prints this way helps performance. The algorithm then takes the minimum
f of these fingerprints, where f is the number of fingerprints used for a document. If any of those
fingerprints happen to appear in other documents, they will be divisible by 256 as well, and it is
likely that they will be part of the minimum f of that document’s fingerprints. So essentially, we
are choosing the same kind of fingerprints from all documents, raising the probability that any
given fingerprint is found.

3.1 Fingerprinting Parameters

It is important to point out the many different parameters involved in fingerprinting a document.
First there is the “granularity”, or the number of characters in a fingerprint. Granularity is the n
discussed earlier. Having a very low granularity, say one character in the extreme case, returns many
“false positives”, or documents that aren’t similar, but are marked as such. Almost all documents
share very similar one character fingerprints. On the other hand, having a high granularity shifts the
problem the other way. Documents probably would not have the same 10,000 character fingerprint
unless they were truly identical. It is important to find the appropriate granularity, and that is
discussed later in Section 5.1.

Another parameter is the number of fingerprints, or f above. Of course it is useful to have large
numbers of fingerprints, but the main trade off here is between accuracy and performance. Having
a huge number of fingerprints makes the work to check a single document very difficult. This is
because, as mentioned in Section 2.2, every individual fingerprint is turned into a Tapestry query.
Large numbers of fingerprints also require much more space in a database. On the other hand,
having too few fingerprints helps performance, but makes the reliability of the algorithm decrease.

The last important parameter is the threshold value T', that is the percentage of fingerprints that
have to match to claim that two documents are similar. If only a small percentage of fingerprints
match, it could be just chance. Therefore, a low threshold might leave a lot of room for false
positives. On the other hand, a large threshold might miss many similar documents. Setting 7" to
90% would mean that 90% of the fingerprints from the documents have to match. Obviously, this
would only happen if the documents were extremely similar.

Client \
. T ry
Client Net TA
Protocol node
Client \
Tapestr
Client Net aRTAy
/ Protocol \ode
Client
; Tapestr
Client Net =Y
/ Protocol \ode
Client

Figure 1: A 3-node Detectlt system

In conclusion, there are trade offs with setting all of these parameters. Finding just the correct
values for these parameters is discussed later in Section 5.1.

3.2 Problems with Fixed Size Fingerprints

One way to measure the accuracy of a fingerprinting technique is to compare it to the results from
full fingerprinting. While correlation between our technique and the full fingerprinting technique is
quite high on documents of similar size, it can become much worse when the set of query documents
are of drastically different sizes. If one query is a 1,000 character document, and another one a
100,000 character document, even if the later has the entire 1,000 character document contained in
it, the probability of landing a fingerprint in that section can be quite small. It seems that there is
a large trade off for the ease of having a fixed size fingerprint. Ideally, more fingerprints for larger
documents is desired, but that can prove very difficult to implement in a system.

4 Detectlt

Our system has several components that it operates on. There’s the client that takes the documents
and the relevant information from the user and sends it over to the net protocol. The net protocol
strips the information from the message sent from the client and sends it over to the Tapestry /ATA
network. Note that each node on the Tapestry/ATA network has such a net protocol since any
node can be used to access the network. The searches in the Tapestry/ATA network are based on
information stored in a persistent Database Component on each node. Figure 1 depicts the system
components and their interaction with each other. In this section we elaborate on some of the
components that need more explanation on their operation.

4.1 The Client Component

A DetectIt client is the user-agent that is used to log on to a Tapestry node in the system. It is
written in JAVA using the swing environment and communicates with the Tapestry nodes using
simple socket connections.

A user first gives the client a list of the files he/she wants to evaluate, and the authors of these
papers. This can be done by adding the papers one by one, or making a script file which adds files
and names all at once.

Once Detectlt has the list of papers to evaluate, the user initiates contact with the local Tapestry
node and sends it a “check” request, which includes 50 fingerprints, a unique identifier for the paper,
the username of the client (usually the professor), the author name, and the date. The Tapestry
node then looks for an approximately matching document in the system. If it cannot find one,
it returns a message to the user saying the documents cleared. If any documents are suspect (if
there exists an approximate match), the node will return the relevant information about the paper
that is suspect to the client. Included in this information is the name of professor that originally
submitted the paper and a unique identifier for that document. The user can then contact the
professor who originally submitted the paper, which can be found using the unique identifier.

With Tapestry’s API, the tasks of the client is quite simple. It is in itself just a simple program
which sends out the fingerprints and receives the response. The only task of the client in the end
is to fingerprint the documents, select the appropriate subset of these fingerprints, and run the
communication between the Tapestry/ATA level and the client.

4.2 The Tapestry/ATA Component

Once a Tapestry/ATA node in our system receives the document information from the client side, it
performs a search based on the fingerprints as the search algorithm in Section 2.2 suggests. Whether
the search returns a suspect document or not, we still publish the document since we want to keep
track of all the documents ever submitted. However, since in the ATA layer a document is given
a globally unique identifier based on the hash of its fingerprints, storing identical documents with
different authors could prove problematic. We solve this problem by using the unique ID received
from the client side in addition to the fingerprints hashed all together to derive a globally unique
identifier in the system. The publishing procedure is the same as the one explained in Section 2.2.

If the system finds a similar document, then before we send information regarding the suspected
paper to the client side, we first compare authors to make sure that the similar paper is not written
by the same author, since that doesn’t constitute as plagiarism. However, since the user may still
be interested in this information, we provide it to the client side so the user can be notified.

4.3 The Database Component

To allow comparisons, one would like to store all papers processed in the system in a database.
However, storing full papers in such a database would violate the intellectual properties of authors.
Therefore, instead of storing a paper in the system, we store a “digest” of the paper. The digest
consists of fingerprints as well as other relevant document information such as author and submission
date. We store the digests through the use of two databases. One database keeps track of the
mapping between document GUIDs and the set of fingerprints for that document. The other
database keeps track of the mapping between a document GUID and the author, the professor, and
the date of submission of that document as well as the unique ID provided from the client so that
in case of a suspected document the user can locate the paper with ease.

The database is stored on disk for each of the nodes to provide persistent storage. When the
system is first started, all objects in the database of the starting node are published so that all
other nodes are aware of all digests each node has previously stored.

5 Evaluation

Evaluating copy detection systems can be quite a difficult task. First, a very large data set is
needed. Second, we need information on which of those pieces of data were plagiarized from the
other. Unfortunately, we could find no such corpus, and so we have to make do with what we had
to work with. Our evaluation was based on two corpora. The first is the MUCT7 corpus, which is
just 200 news articles selected to be about two different topics, air line crashes and missile launches.
The second was the bible, chosen for it’s large size and easy access.

In this section, we present results for the correctness and performance evaluations of our system.
Our correctness evaluation consists of how accurately our system performs in detecting similar
documents followed by the performance evaluation that confirms theoretical running time of the
fingerprinting scheme. We also experimented with running our system using up to four Tapestry
nodes and the results for these experiments are also presented. We conclude our evaluation with a
rather big list of shortcomings of our system. All problems noted constitute steps of possible future
work.

5.1 Correctness

We conducted many experiments to select parameters for the fingerprinting that would perform
well. As stated before, we did not have large enough corpora to do significant studies, but we
experimented using the data we did have. First, we looked at setting the appropriate threshold
value, T'. The threshold value is the percentage of fingerprints that have to match in two documents
for them to be considered similar. Figure 2 shows three different threshold values, 10%, 25% and
50%. These experiments were run with a granularity (n) of 100 and 100 fingerprints per document
(f)- Results show that if we want to find documents that are only 25% similar with these two
parameters, the 10% threshold is a good choice. Note that the slope of the middle part of each
plot is an indication of how much variability there is in a system. The perfect system would have
a graph that looked like a step-graph, where it would be possible to tweak the fall from 100%
detection to 0% detection at any percent difference along the x-axis.

We also looked at setting an appropriate fingerprint length, n. We used 10,000 character
segments from the bible, and compared them against each other. Since the segments were all
unique, we were interested in setting the granularity high enough so that there would be no “false
positives”, or segments that Detectlt claimed were the same, even though they weren’t. Figure 3
shows that we had to make the granularity 30 characters long before eliminating false positives in
this extremely small corpus. It is safe to assume that with a lot more data, it’s possible to have
false positives that would show up, and the fingerprint size would have to increase dramatically.
Clearly, the appropriate granularity value is highly dependent on the chosen threshold value. In
this experiment, we had a threshold of 10% and we used 50 fingerprints per document.

These experiments, and others like it, led us to set the values that we currently have employed
in DetectIt. As implemented, the threshold value is 10%, we take 50 character fingerprints, and
we take 100 fingerprints per document. Of course, these numbers are just preliminary values that
seem to yield decent results. Further experimentation is needed to set them more appropriatly to
the task at hand.

Effect of Threshold on Detection of Similar Documents
(For 50 fingerprints/doc)
T T

100

Threshold = 25
80 o

Threshold = 12
60

50~

% Detected

40t

301

20

10r

0 L L L L L L L
0 10 20 30 40 50 60 70 80 920 100

% Difference

Figure 2: Effect of threshold on detection of similar documents

Effect of FP Granularity on False Positives
100 T T

90+ q

70F 1

60 q

of false positives
@
3
T
I

40t —

20 il

10 q

L L
5 10 15 20 25 30
FingerPrint Granularity

Figure 3: Effect of fingerprint granularity on number of false positives

Fingerprinting time vs. Document Size
T T T T

time (msec)

0 L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of Document (# of char)

Figure 4: Fingerprinting time vs. document size

5.2 Performance

The performance of the system was definitely suitable for the needs of a user. Figure 4 shows
that the fingerprinting time was linear on the size of the document. This makes sense as the
algorithm takes every m-character string from a document. The time for fingerprinting a single
10,000 character document was about 500 milliseconds on average.

We also experimented on the time it takes to query a document for different number of nodes
in the system. Since we were limited in resources we could test performance on only up to 4 nodes
as can be seen in the following table.

Misses (sec/doc) | Hits (sec/doc)
1 Tapestry Node .075 .75
2 Tapestry Nodes .083 .75
3 Tapestry Nodes .130 .74
4 Tapestry Nodes .150 .75

The misses column of the table refers to query documents that do not have a similar document in
the system and the hits column refers to those that do return a suspected document. As suggested
from the numbers, the hits take about constant time as nodes in the system increase whereas an
increase can be observed in the time it takes for to return misses. Also clearly for any number of
nodes the misses take more time than hits. We believe these results follow those that are suggested
by the Tapestry framework.

We conclude the performance evaluation by pointing out that the overall turnaround time for
a document of 10,000 characters is less than .75 seconds which we believe to be reasonably fast.

5.3 Shortcomings

Our current version of Detectlt has many shortcomings since it is just a crude version of a copy
detection mechanism implemented in a very short period of time. Rather than spending time on
optimizations and more functionality, our goal was to bring about the approach of a distributed

system and to show that this is a feasible approach. We believe we achieved this goal despite the
many shortcomings we’ll briefly describe in this section.

One of the problems we have in our system is the “fixed fingerprint size” approach to extracting
fingerprints from a document. As we have mentioned in Sec 3.2, for a very large document, a limited
number of fingerprints are very unlikely to capture the distinguishing properties of the document.
Although we considered supporting variable fingerprints we realized that it would lead to wasted
space in the database component of our system if there are few large documents and many short
documents.

Another problem we have realized is the fact that our system would not be able to detect a
document where each paragraph is taken from different documents. This is a consequence of the
fact that our system returns only one - the most similar and closest in network distance - document
if a similar version of a queried document was found in the system, due to the design of Tapestry
infrastructure.

In literature, different levels of plagiarism have been categorized in the following way: Plagia-
rized, subset, exact copy, related. A plagiarized document is a document modified slightly with a
different author. A subset case refers to the one when one document is exactly contained in an-
other. An exact copy is one where the documents are exactly the same and the author is different.
A related document pair would share the same subject therefore using the same terms and maybe
voicing the same opinions. A desirable copy detection mechanism would be able to distinguish
between these categories. Our system at this point cannot. We only return “suspected” or “clear”
as a result since we only check for matching number of fingerprints greater than a fixed threshold,
which is currently 5, or 10%.

Many of the fee-based services offered on the web test query documents against other documents
available on the web. For our system to work against Internet-plagiarism, somebody would have to
enter all such documents into our system. It could be useful to implement some sort of an update
mechanism that would search such documents on the web periodically and add them to our system
automatically.

Another improvement to our system would be to add support for different formats of documents.
Currently we only support text documents, but we think it would be worth the effort to support
other documents such as PDF and Postscript. However, supporting such documents is not as trivial
as it sounds due to the amount of noise they introduce into the documents during the conversion.
For example, two mathematical documents with numerous embedded equations would lose all such
equations during the conversion process. Then it would be rather difficult to detect the similarity
between two such mathematical documents.

6 Related Work

The systems aspect of our work closely follows that of Zhou, et al.[15]. Their work consisted
of creating the Approximate Text Addressing layer on Tapestry and implementing an application
called SpamWatch, used to detect spam mail. Our work is different from theirs in the following ways:
firstly, our application has different storage requirements regarding the paper related information
on the tapestry nodes. We store much more information about a document so that when plagiarism
is suspected, it is easy for the user to trace down a given document, whereas in SpamWatch no
such storage is necessary. Secondly, our handling of suspected documents is slightly different than
theirs: we store the information related to every single document processed, since our goal is to
have a big database that a user can test against. Theirs involved only storage of documents that
were identified as spam. And finally, our user interface differs greatly from theirs. DetectIt was

10

implemented as an independent application with a necessary GUI, whereas SpamWatch was an
add-in to Microsoft Outlook.

From the copy detection point of view, one can find many papers in literature describing different
approaches to the issue of plagiarism. Our approach fits in the category of “registry servers”,
where a query document is checked against a repository of original documents. There has been
numerous implementations of copy detection systems in this category such as SCAM [9], [10],
COPS [1], CHECK [11], Koala [5], and SE(Signature Extraction) [3]. The main difference between
our system and these systems is that our system is a peer-to-peer decentralized system whereas
in these systems all clients connect to one server that constitutes a single point of failure. The
systems differ among each other based on algorithms used to detect similarities, the accuracy of
detected similarities and enhancements to decrease space and time requirements. Notably, most
systems use the fingerprinting approach by Manber [13] or a variation of it. Others use a method
called “ranking” which was borrowed from the field of Information Retrieval [6].

To our knowledge there is only one fairly distributed approach to the problem of copy detection
as described in [4]. This is a distributed version of SCAM, thus the name “dSCAM”. dSCAM can
go through multiple databases to search for a query document, unlike the other one-server systems.
Given a large list of databases with some meta-data information, the system first flags the databases
that contains at least one similar document to the one that’s queried. Then these databases are
searched using a slightly different algorithm to minimize the number of documents to check against
and other such querying costs. dSCAM is quite different in its approach and methods compared
to Detectlt in the following ways: first of all, with the use of the transparency of Tapestry, we see
many databases unified as one; there’s no need to keep track of database meta-data. The search
is conducted based on the routing algorithms of Tapestry which avoid having to check every other
document in the whole system. Also, our system supports a peer-to-peer design whereas dSCAM
doesn’t. A feature in dASCAM that is not possible in our approach is that it doesn’t require the
participating databases to be a part of the system. It provides methods to be able to search and
retrieve documents in disconnected databases.

7 Conclusions

We presented Detectlt, a peer-to-peer plagiarism detection system built on the Tapestry framework.
Therefore our system inherits Tapestry’s scalability, fault tolerance and ease of maintenance. We
chose to use such a distributed approach due to the nature of the problem, where effectiveness
increases with the number of users. Our method for detecting similar documents relies on the
concept of fingerprinting.

The accuracy of a fingerprinting technique is highly dependent on the choice of parameters. Our
goal was to prove that a distributed approach to plagiarism detection could be successful. Therefore,
we did not perform a thorough analysis to optimize the parameters. Our chosen parameters allow
detection of similarity between documents that are up to 70% different. However, changing these
parameters in the system is a trivial task.

Our results show that this approach to the problem is quite feasible. Our overall turn around
time to query a document was less that .75 seconds, suitable for regular use of the program. The
platform independent client allows widespread deployment of the system with very little mainte-
nance requirements.

11

References

[1] S. Brin, J. Davis, and H. Garcia-Molina “Copy Detection Mechanisms for Digital Documents”
In Proc. of ACM SIGMOD Ann. Conf., San Francisco, CA, 1995

[2] J. Weinstein and C. Dobkin “Plagiarism in U.S. Higher Education: Estimating Internet Pla-
giarism Rates and Testing a Means of Deterrence” University of California, Berkeley, Nov.
2002,

[3] R.A. Finkel, A. Zaslavsky, K. Monostori, H. Schmidt “Signature Extraction for Overlap Detec-
tion in Documents” Twenty-Fifth Australasian Computer Science Conference (ACSC2002)

[4] H. Garcia-Molina,L. Gravano and N. Shivakumar “dSCAM: Finding Document Copies Across
Multiple Databases (1996)” Proc. of 4th Intl. Conf. on Parallel and Distributed Information
Systems

[5] N. Heintze “Scalable Document Fingerprinting” 1996 USENIX Workshop on Electronic Com-
merce

[6] T.C.Hoad and J. Zobel “Methods for Identifying Versioned and Plagiarized Documents” Jour.of
the American Soc. for Information Science and Technology. (To appear)

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker “Scalable Content Addressable
Network” Proc. of ACM SIGCOMM 2001

[8] A. Rowston and P. Druschel “Pastry:Scalable, decentralized object location and routing for
large-scale peer-to-peer systems” Proc. 18th IFIP/ACM Intl. Conf. on Distributed Systems
Platforms, Nov. 2001

[9] N. Shivakumar and H. Garcia-Molina “Building a Scalable and Accurate Copy Detection Mech-
anism” Proc. of 1st Intl. Conference on Digital Libraries, 1996

[10] N. Shivakumar and H. Garcia-Molina “SCAM: A Copy Detection Mechanism for Digital
Documents” Proc. of the 2nd Ann. Conf. on the Theory and Practice of Digital Libraries

[11] A. Si, H.V. Leong and R.W.H. Lau “CHECK: A Document Plagiarism Detection System” In
Proc.of ACM Symp. for Applied Computing, pp70-77, Feb 1997

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan “Chord:Scalable Peer-to-
Peer Lookup Service for Internet Applications” SIGCOMM’01 Aug 27-31, 2001, San Diego,
California,

[13] U. Manber “Finding similar files in a large file system.” In Proceedings of Winter USENIX
Conference, 1994

[14] B. Zhao, A.D. Joseph and J. Kubiatowicz “Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing” Tech. Rep. UCB/CSD-01-1141, U.C.Berkeley, 2001

[15] F. Zhou, L. Zhouang, B. Zhao, L. Huang, A.D. Joseph and J. Kubiatowicz “Approximate
Object Location and Spam Filtering and Peer-to-peer Systems” Proc. of ACM/IFIP /USENIX
Intl. Middleware Conf. , 2003

12

