Multiprogramming on physical memory

e Makes it hard to allocate space contiguously

- Convenient for stack, large data structures, etc.

e Need fault isolation between processes

- Someone else testing tcpproxy on your machine. ..

e Processes can consume more than available memory

- Dormant processes (wating for event) still have core images



Solution: Address Spaces

e Give each program its own address space

e Only “privileged” software can manipulate
mappings

e Isolation is natural

- Can’t even name other proc’s memory



Alternatives

e Segmantation
- Part of each memory reference implicit in segment register
segreg «— (offset, limit)
- By loading segment register code can be relocated

- Can enforce protection by restricting segment register loads

e Language-level protection (Java)
- Single address space for different modules

- Language enforces isolation

e Software fault isolation
- Instrument compiler output

- Checks before every store operation prevents modules from
trashing each other



Paging

e Divide memory up into small “pages”

e Map virtual pages to physical pages

- Each process has separate mapping

e Allow OS to gain control on certain operations
- Read-only pages trap to OS on write
- Invalid pages trap to OS on write

- OS can change mapping and resume application

e Other features sometimes found:
- Hardware can set “dirty” bit

- Control caching of page



Example: Paging on PDP-11

e 64K virtual memory, 8K pages

e 8 Instruction page translations, 8 Data page
translations

e Swap 16 machine registers on each context switch



Example: VAX

e Virtual memory partitioned
- First 2 Gigs for applications
- Last 2 Gigs for OS—mapped same in all address spaces

- One page table for system memory, one for each process

e Each user page table is 8 Megabytes

- 512-byte pages, 4 bytes/translation,
1 Gig for application (not counting stack)

e User page tables stored in paged kernel memory

- No need for 8 physical Megs/proc. only virtual



Example: MIPS

e Hardware has 64-entry TLB

- References to addresses not in TLB trap to kernel

e Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

o Kernel itself unpaged
- All of physical memory contiguously mapped in high VM

- Kernel uses these pseudo-physical addresses

e User TLB fault hander very efficient

- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables



Example: Paging on x86
e Page table: 1024 32-bit translations for 4 Megs of
Virtual mem
e Page directory: 1024 pointers to page tables
e J/.cr3—page table base register

e J.crO—bits enable protection and paging

e INVLPG - tell hardware page table modified
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64-bit address spaces

e Some machines have 64-bit virtual address spaces

e Makes hierarchical page tables inconvenient

- E.g., might need to walk five levels of table on page fault!

e Solution: Hashed page tables
- Store Virtual — Physical translations in hash table

- Table size proportional to physical memory

e Precludes hardware table walking

- Not a problem with large enough software-controlled TLB



OS effects on application performance

e Page replacement

Optimal — Least soon to be used (impossible)

Least recently used (hard to implement)

Random

Not recently used

e Direct-mapped physical caches

Virtual — Physical mapping can affect performance

Applications can conflict with each other or themselves

Scientific applications benefit if consecutive virtual pages to
not conflict in the cache

Many other applications do better with random mapping



Paging in day-to-day use

e Demand paging
e Shared libraries
e Shared memory

e Copy-on-write (fork, mmap, etc.)



VM system calls

void *mmap (void *addr, size_t len, int prot,
int flags, int fd, off t offset)
- prot: OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

- flags: shared/private, ...

int munmap(void *addr, size_t len)

- Removes memory-mapped object

int mprotect(void *addr, size_t len, int prot)

- Changes protection on pages to or of PROT......

int mincore(void *addr, size_t len, char *vec)

- Returns in vec which pages present



Catching page faults

struct sigaction {
union { /* signal handler */
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, void *);
s
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

+;

int sigaction (int sig, const struct sigaction *act,

struct sigaction *oact)

e Can specify function to run on SIGSEGV
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Example: OpenBSD/i386 siginfo

sigcontext {
sc_gs; int sc_fs; int sc_es; int sc_ds;
sc_edl; int sc_esi; int sc_ebp; int sc_ebx;

sc_edx; 1nt sc_ecx; 1int sc_eax;

sc_eip; int sc_cs; /* instruction pointer */
sc_eflags; /* condition codes, etc. */

sc_esp; int sc_ss; /* stack pointer */

sc_onstack; /* sigstack state to restore */
sc_mask; /* signal mask to restore */
sc_trapno,

sc_err;



Advantages/disadvantages of paging

e What happens to user/kernel crossings?
- More crossings into kernel

- Pointers in syscall arguments must be checked

e What happens to IPC?

- Must change hardware address space
- Increases TLB misses

- Context switch flushes TLB entirely on x86
(But not on MIPS. .. Why?)



Example: 4.4 BSD VM system

e Each process has a vmspace structure containing
- vm_map — machine-independent virtual address space
- vm_pmap — machine-dependent data structures

- statistics — e.g. for syscalls like getrusage ()

o vm_map is a linked list of vm_map_entry structs
- vm_map_entry covers contiguous virtual memory

- points to vm_object struct

e vm_object is source of data
- e.g. vnode object for memory mapped file
- points to list of vm_page structs (one per mapped page)

- shadow objects point to other objects for copy on write
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Pmap (machine-dependent) layer

e Pmap layer holds architecture-specific VM code

e VM layer invokes pmap layer
- On page faults to install mappings
- To protect or unmap pages

- To ask for dirty /accessed bits

e Pmap layer is lazy and can discard mappings
- No need to notity VM layer

- Process will fault and VM layer must reinstall mapping

e Pmap handles restrictions imposed by cache



Example uses

o vm_map_entry structs for a process
- r/0 text segment — file object
- r/w data segment — shadow object — file object

- r/w stack — anonymous object

o New vm_map_entry objects after a fork:
- Share text segment directly (read-only)

- Share data through two new shadow objects
(must share pre-fork but not post fork changes)

- Share stack through two new shadow objects

e Must discard/collapse superfluous shadows

- E.g., when child process exits



What happens on a fault?

e Traverse vm_map_entry list to get appropriate entry

- No entry? Protection violation? Send process a SIGSEGV
e Traverse list of [shadow] objects
e For each object, traverse vm_page structs

e Found a vm_page for this object?
- If tirst vm_object in chain, map page
- If read fault, install page read only
- Else if write fault, install copy of page

o Else get page from object

- Page in from file, zero-fill new page, etc.



