
G22.3250 – Honors Operating Systems

David Mazières
715 Broadway, #708

dm@cs.nyu.edu



Administrivia

• All assignments are on the web page
http://www.scs.cs.nyu.edu/G22.3250/

• Part of each class will be spent discussing papers
- Read the papers before class

• Grading based on four factors
- Participation in discussion (so read the papers before class!)

- Midterm and Final Quiz

- Lab assignments

- Final project



Handouts today

• Account information form
- Will give you access to dedicated class machines for lab

- Accounts will be created Friday

- Email me if you don’t hear from me by Friday

• Access form for 7th floor of 715 Broadway
- So you can come to my office hours

- Only if you don’t already have access (PhD students do)

• Using TCP through sockets (on web page)

• First lab goes on-line Friday (on web page)



Course topics I

• Core operating systems
- User/kernel APIs & performance issues

- Concurrency—threads & async programming

- Virtual memory

- Scheduling

- Implementing network protocol stacks

- High-performance device and driver issues

- File systems

- I/O abstractions & Kernel design



Course topics II

• Distributed systems topics
- Distributed shared memory

- Distributed file systems

- Network objects

- Scalability

- Replication & consistency

- Cryptography and security

- Peer-to-peer systems

• Most contemporary OS work focuses on
distributed systems

- Labs will stress distributed programming



What is an operating system?

• Makes hardware useful to the programmer

• Provides abstractions for applications
- Manages and hides details of hardware

- Accesses hardware through low/level interfaces
unavailable to applications

• Provides protection
- Prevents one process/user from clobbering another



What is a distributed operating system?

• The holy grail: Transparency
- Have a bunch of machines look just like one machine

- As easy to manage as one machine

- Save applications & users from worrying about it

- Just add more machines to scale to higher workloads

• The reality: Numerous complications
- Failures, especially partial & network failures

- Concurrency

- Long latencies

- Security issues



Successful distributed system architectures

• Client/server architecture
- Clients request services from servers with network

messages

- Modular architecture, isolates servers from client faults

- Can potentially scale by adding more servers

• Peer-to-peer (decentralized)
- Ad hoc configuration can survive loss of any machine

- Potential scalability problems (e.g., can’t broadcast)

• Single name or address space



Why Operating Systems?

• Operating systems are a maturing field
- Most people use a handful of mature OSes

- Hard to get people to switch operating systems

- Hard to have impact with a new OS

• High-performancs servers are an OS issue!
- Need to manage hardware resources, often at low level

- Much server software faces the same issues as OSes

- OS abstractions often even interfere with servers

- Big open problem: OSes don’t support flexibility needs of
high-performance servers



Example: A video server

• Hardware capabilities
- 20 MByte/sec SCSI disk

- 100 Mbit/sec Ethernet

• Server requirements
- 200 Kbit/sec video streams

- Many users spread around the Internet

- Access control

• Maximum capacity: 500 clients



The reality: Much lower capacity
• CPU bottleneck

- Software structure may impose many context switches

- Concurrency may introduce lock contention

• Disk I/O limitations
- Multiple video streams can introduce disk seeks: 5ms seek per

8K read → 1.6 MByte/sec

- Must pipeline disk requests: prefetching

- Must deal with OS buffer cache (may fill memory and cause
paging)

• Network complications
- OS may buffer stale data (dropped frames)

- Introduces latency to congestion feedback (received packets not
prioritized)



Concurrency

• Goal: Maximize throughput
- Service the maximum number of clients over time

• Benefit: Overlap latencies
- Dedicate CPU time to other clients during network

transmission/client computation

- Present disk with simultaneous requests
→ achieve better disk arm scheduling

- Amortize interrupts over multiple packets

• Dangers: Reducing throughput with overload
- Introducing context switches

- Increasing cache misses

- Increased memory/buffer cache usage → Paging / thrashing

• Two basic approaches: Threads & Asynchronous I/O



Threads

• Write sequential-looking code:

for (;;) {

read_from_disk;

write_to_network;

wait_until_next_frame_needed:

}

• Run multiple instances of code in parallel
- While one thread paused/waiting for I/O, schedule another

- Protect shared data by locks

• Benefit: threaded code can exploit multiprocessor



Limitations of threads

• High memory overhead
- Need one stack per thread

• High context switch overhead for kernel threads
- But user threads suck, too (no multiprocessing)

• Lock contention can kill performance
- Even uncontested synchronization operations expensive

- Coarse-grained locking kills concurrency

- Fine-graned locking costs CPU time

- Preemption may happen at inopportune moments
→ priority inversion

• Brutally hard to program!



Why thread programming is hard

• Data races

• Deadlock

• Threads break abstraction
- Must worry about what locks modules assume & aquire

T1 =⇒ Module A =⇒ Module B =⇒ wait

T2 =⇒ Module A =⇒ Module B =⇒ signal Deadlock!

- Breaks callbacks

T1 =⇒ Module A =⇒ Module B =⇒ Module A Deadlock!

• Hard to debug
- Non-determinism based on internal scheduler



Asynchronous I/O

• I/O operations never block
- e.g., if no data, read immediately returns error

• Single blocking operation: select/poll
- Returns list of I/O operations that are ready

• Event driven architecture
- Maintain list of callbacks awaiting I/O events

- Main dispatch loop makes callbacks when event happens

struct callback {

void (*cb) (void *); void *arg;

};

main () {

initialize_callbacks;

foreach (pending I/O) { run_callback; }

}



Benefits of Asynchronous programming

• Low overhead
- Callback typically much smaller than thread stack

- No context switch overhead (just a procedure call)

• Implicit coordination
- No data races

- No deadlock

- No priority inversion



Limitations of Asynchronous programming

• Cannot have long-running callbacks

• Not automatically scalable to multiprocessor

• Hard to program
- Must explicitly package up state across callbacks

Cannot share stack-allocated state

- Lots of dynamic memory allocation
(who is resposible for freeing what?)

- Logical flow of events broken into many event handlers



Other issues for high-performance servers:

• Coordination & scheduling

• Disk allocation & scheduling

• Memory management (including buffer cache)

• Address spaces (VM)

• Distributed system abstractions

• Efficient data movement
- Kernel effectively a data mover

- IPC, memory → network, disk → network,
network → network, etc.



Example: Coordination

• Interrupts are expensive (microseconds)
- Under heavy load, can spend all time servicing interrupts

- Receiver livelock occurs when more packets arrive than can
be processed

• Polling
- Amortize one driver invocation over many packets

- Adds latency (unreasonable under low loads)

- Fits naturally into asynchronous I/O model

• Solution: switch dynamically between interrupts
& polling



Scaling to multiple CPUs

• Multiprocessors help if user-level CPU bottleneck
- Might hurt system time, though

- Non-linear cost vs. speedup

• Server clusters
- Inexpensive if scalable

• Distributed server clusters
- When client-server bandwidth is low



Clusters

• Naming transparency
- Should client be aware of cluster?

• Server selection

• Consistency
- Multiple servers must agree on state of things

• Availability
- Chances of one node failing increase

- Replication helps availability, complicates consistency



Distributed clusters

• Many issues:
- Replication policies

- Efficient data distribution

- Consistency

- Network monitoring and modeling

- Global load-balancing

• Rethink traditional OS abstractions
- File system semantics, etc.

- Trade-off between accuracy, latency, and network load



Summary
• High performance servers an OS issue

- Pipelining disk & network requests

- Coordination

- Caching

• True scalability requires distributed system
- Reliability/Availability

- Security

- Consistency

- Tolerating latency

• Difficult
- If a fast server bypasses OS abstractions, how does this

affect other applications?



System calls

• Problem: How to access resources other than CPU
- Disk, network, terminal, other processes

- CPU prohibits instructions that would access devices

- Only privileged OS “kernel” can access devices

• Applications request I/O operations from kernel

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, gets, etc. all user-level code



I/O through the file system

• Applications “open” files/devices by name
- I/O happens through open files

• int open(char *path, int flags, ...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file



Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure
- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror, strerror print human-readable messages
- perror ("initfile");

- printf ("initfile: %s\n", strerror (errno));

→ “initfile: No such file or directory”



Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes read, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
- Returns previous file offset, or -1 on error

• int close (int fd);

• int fsync (int fd);

- Guarantee that file contents is stably on disk



Other system calls on pathnames
• int chdir (const char *dir);

- Change working directory (what cd command does)

• int mkdir (const char *dir);

• int rmdir (const char *dir);

- Make and remove direcories

• int unlink (const char *path);

- Delete pathname specified by path

• int link (const char *p1, const char *p1);

- Creates p2; p1 & p2 identical directory entries

• int symlink (const char *p1, const char *p2);

- Creates p2; p2 is an alias for name p1



The rename system call

• int rename (const char *p1, const char *p2);

- Changes name p2 to reference file p1

- Removes file name p1

• Guarantees that p2 will exist despite any crashes
- p2 may still be old file

- p1 and p2 may both be new file

- but p2 will always be old or new file

• fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#

- Calls fsync on file descriptor

- rename (".#file#", "file");



File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal



Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor

- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(lseek on one will affect both)

• int fcntl (int fd, F SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0

- Makes file descriptor non-inheritable by spawned programs



Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]

- Writes to fds[1] will be read on fds[0]

- When last copy of fds[1] closed, fds[0] will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files

- When fds[1] closed, read(fds[0]) returns 0 bytes

- When fds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE



Sockets: Communication between machines

• Datagram sockets: Unreliable message delivery
- On Internet: User Datagram Protocol (UDP)

- Send atomic messages, which may be reordered or lost

- Special system calls to read/write: send/recv

• Stream sockets: Bi-directional pipes
- On Internet: Transmission Control Protocol (TCP)

- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read



Socket naming

• Every Internet host has a unique 32-bit IP address
- Often written in “dotted-quad” notation: 204.168.181.201

- DNS protocol maps names (www.nyu.edu) to IP addresses

- Network routes packets based on IP address

• 16-bit port number demultiplexes TCP traffic
- Well-known services “listen” on standard ports: finger—79,

HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

- A connection consists of five components: Protocol (TCP),
local IP, local port, remote IP, remote port

• All Internet traffic routed as small packets
- Each packet contains address information in header



System calls for using TCP

Client Server

socket – make socket

bind – assign address

listen – listen for clients

socket – make socket

bind – assign address

connect – connect to listening socket

accept – accept connection



Example client
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);



Example server
struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (sockaddr *) &sin, &len);

/* do something with cfd */

close (cfd);

}



Concurrent connections

• Servers must handle multiple clients concurrently
- Read or write of a socket connected to slow client can block

- Overlap network latency with CPU, transmission, disk I/O

- Keep disk queues full when server accesses disk

• Can use one process per client: accept, fork, close
- High overhead, cannot share state between clients

• Can use threads for concurrency
- Data races and deadlock make programming tricky

- Must allocate one stack per request

• Use non-blocking read/write calls
- Unusual programming model



Non-blocking I/O

• fcntl sets O NONBLOCK flag on descriptor

int n;

if ((n = fcntl (s, F_GETFL)) >= 0)

fcntl (s, F_SETFL, n | O_NONBLOCK);

• Non-blocking semantics of system calls:
- read immediately returns -1 with errno EAGAIN if no data

- write may not write all data, or may return EAGAIN

- connect may “fail” with EINPROGRESS (or may succeed, or
may fail with real error like ECONNREFUSED)

- accept may fail with EAGAIN if no pending connections



How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);



Asynchronous programming model

• Many non-blocking file descriptors in one process
- Wait for pending I/O events on file many descriptors

- Each event triggers some callback function

• Lab: libasync – supports event-driven model
- Register callbacks on file descriptors

- Call amain() – main select loop

- Add/delete callbacks from within callbacks


