
Vnodes

• Every open file has an associated vnode struct

• All file system types (FFS, NFS, etc.) have vnodes
- v data points to FS-specific data

- Function pointers for operations (open/read/write/. . . )

• When refcount → 0, inactive() called
- Does not “deallocate” vnode—caches it

- Files can very efficiently be reopened before deallocation

- reclaim() revokes vnode for another use



Name cache

• Caches 〈dir, name〉 → vnode translations
- Both positive and negative lookups cached

• Need to invalidate all names for a vnode (mv dir)
- Each vnode has a “capability,” also contained in cache

- Bump 32-bit capability to flush cache efficiently

- When counter wraps, invalidate all of name cache

• Need to invalidate negative lookups when
directory changed

- Bump capability



Buffer cache

• Caches file blocks in memory
- Hash table maps 〈vnode, offset〉 → buffer

- Freelists keep buffers not in use

• Operations on buffers:
- bread() – fill buffer from underlying file

- breadn() – like bread(), but start read ahead

- brelse() – relinquish unmodified buffer

- bwrite() – synchronously write data to disk

- bawrite() – asynchronously write data to disk

- bdwrite() – schedule delayed write



Write policies

• When to use synchronous bwrite()?
- fsync() system call

- Network file systems with synchronous writes

- When cleaning reclaimed buffer

- When order of disk writes matters

• When to use bdwrite()?
- Buffer may be modified again

• When to use bawrite()?
- Buffer full, might as well clean it



Buffer free lists

• Locked – unused (for superblock?)

• LRU – (or can replace with different algorithm)

• Age
- Deleted files pushed onto front (reuse immediately)

- Read-ahead blocks placed at end

• Empty
- No physical memory



Algorithm: Optimal

• Definition: Maximize #hits/#references
- Evict block that will be referenced furthest in the future

• How to implement
- Gather trace of all references

- Retroactively figure out what you should have done

• Useful only as a point of comparison

• LRU used to approximate algorithm
- Most recently touched most likely to be touched soon

• If you could implement Optimal, is it best?
- Best hit rate, but what about fairness?



Algorithm: FBR

• Idea: Weight blocks by frequency of reference
- Count # of references

- Evict blocks with lowest counts

• Problem: Many short-spaced references, then none
- Don’t bump count in “new” section of LRU queue

• Problem: Evicted right as blocks leave new
- Only evict in “old” section of queue

• Problem: Never evict blocks with high count
- Decay by half when total of counts reach some max



Algorithm: LRU-k

• LRU based on kth most recent access

• Regular LRU is LRU-1

• LRU-2 works well in practice
- Great for walking indexed data structures

• Computationally expensive
- Costs log N to manipulate buffer (with cache size N )



Algorithm: 2Q

• Goal: Cheaper algorithm with benefits of LRU-2

• Idea: Keep 2 queues:
- A1 for buffers accessed only once – FIFO

- Am for buffers accessed multiple times – LRU

• Problem: Sizing A1 vs. Am is hard

• Solution: Ghost buffers
- Break A1 into A1in and A1out

- A1out doesn’t actually contain buffered data



Algorithm: SEQ

• Detect sequential accesses

• Apply MRU to pages fetched by sequential access

• Does not detect looping behavior



EELRU

• Idea: Ordinarily use simple LRU
- If many recently fetched pages being evicted, move to

fallback algorithm.

• Divide LRU queue into three regions
- LRU region – most recently accessed pages

- early region – less recently accessed pages

- late region – even less recently accessed pages

- Use ghost buffers to track more buffers than memory size

• Evict from head of early or head of late point,
based on mathematical predictions



Informed Prefetching & Caching [PGGSZ95]

• Idea: Improve I/O performance by giving OS hints

• What is a hint in computer systems?
- Information that may improve performance

- Does not have to be true (will not affect correctness)

- Does not have to be heeded by system

• Two kinds of hints: Advice & Disclosure
- Advice—suggested policy, e.g., “use MRU for this file”

- Disclosure–gives notice of how App. will use OS interface,
e.g., “App. will read file 4 times”

• Which is a better: Advice or disclosure?



Advantages of disclosure

• Remains correct when environment changes
- Increases portability of application to different hardware

• Gives OS more info =⇒ More robust
- OS may not be able to follow every process’s advice

e.g., not enough buffers to prefetch everything

- Disclosure allows OS to optimize for actual resources

• Hints uses same abstractions as later operations
- I.e., specified with fd/offsets, not inode/buffers

- Better modularity



Disclosure interface
• Added disclosure ioctl call w. two arguments

- File specifier: File descriptor or file name

- Pattern specifier: Whole file, or list of 〈offset,len〉 pairs

• OS weighs needs/resources of hints vs. demand
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Using speculative execution [CG99]

• Disclosure requires programmer to insert hints

• Idea: Automatically generate hints with spec. exec.
- Application stalls waiting for a read

- Spawn another thread, and continue executing w/o data

- Issue prefetches for any further accesses

• Preventing side effects in speculative thread
- Disallow all system calls except fstat (& sbrk)

- Catch signals in case of errors like divide-by-zero

- Implement software copy-on-write—Make two copies of
application text segment, instrument one for CoW

• Results: 20-70% improvement on many apps


