
Keeping communications secret

• Encryption guarantees secrecy

• Symmetric encryption
- Encryption algorithm comprises two functions E and D

- To communicate secretly, parties share secret key K

- Given message M , E(K, M)→ C, D(K, C)→M

- M is plaintext, C is ciphertext

- Attacker cannot derive M from C without K

• Most common algorithm type: Block cipher
- AES from Lab 4 is a block cipher

- Operates on fixed-size blocks (e.g., 64 or 128 bits)

- Maps plaintext blocks to same size ciphertext blocks



Example block cipher (blowfish)
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13 More Iterations

• Derive F and 18 subkeys
from Key—P1 . . . P18

• Divide plaintext block into
two halves, L0 and R0

• Ri = Li−1 ⊕ Pi

Li = Ri−1 ⊕ F (Ri)

• R17 = L16 ⊕ P17

L17 = R16 ⊕ P18

• Output L17R17.

(Note: This is just to give an idea; it’s not a complete description)



Problem: Integrity

• Attacker can tamper with messages
- E.g., corrupt a block to flip a bit in next

• What if you delete original file after transfer?
- Might have nothing but garbage at recipient

• Encryption does not guarantee integrity
- A system that uses encryption alone (no integrity check) is

often incorrectly designed.

- Exception: Cryptographic storage like lab 4 (just protects
against stolen or copied data)



Message authentication codes

• Message authentication codes (MACs)
- Sender & receiver share secret key K

- On message m, MAC(K, m)→ v

- Attacker cannot produce valid 〈m, v〉without K

• To send message securely, append MAC
- Send {m, MAC(K, m)}, or encrypt {m, MAC(K, m)}K′

- Receiver of {m, v} checks v
?
= MAC(K, m)}

• Careful of Replay – don’t believe previous {m, v}



Cryptographic hashes

• Hash arbitrary-length input to fixed-size output
- Typical output size 128 or 160 bits

- Cheap to compute on large input (faster than network)

• Collision-resistant: Computationally infeasible to
find x 6= y, H(x) = H(y)

- Many such collisions exist

- No one has been able to find one, even after analyzing the
alrogithm

• Several hashes in common use (SHA-1, MD5)



Applications of cryptographic hashes

• Small hash uniquely specifies large data
- Hash a file, remember the hash value

- Recompute hash later, if same value no tampering

- Hashes often published for software distribution

• HMAC(K, m) = H(K ⊕ opad, H(K ⊕ ipad, m))

- H is a cryptographic hash like SHA-1

- ipad is 0x36 repeated 64 times, opad 0x5c repeated 64 times



Public key encryption

• Three randomized algorithms:
- Generate – G(1k)→ K, K−1

- Encrypt – E(K, m)→ {m}K

- Decrypt – D(K−1, {m}K)→ m

• Provides secrecy, like conventional encryption
- Can’t derive m from {m}K without knowing K−1

• Encryption key K can be made public
- Can’t derive K−1 from K

- Everyone can use the same public key to encrypt messages
for one recipient.



Digital signatures

• Three (randomized) algorithms:
- Generate – G(1k)→ K, K−1

- Sign – S
(

K−1, m
)

→ {m}K−1

- Verify – V (K, {m}K−1 , m)→ {true, false}

• Provides integrity, like a MAC
- Cannot produce valid 〈m, {m}K−1〉 pair without K−1

• Many keys support both signing & encryption
- But Encrypt/Decrypt and Sign/Verify different algorithms!

- Common error: Sign by “encrypting” with private key



Cost of cryptographic operations

Operation msec

Encrypt 1.11

Decrypt 39.62

Sign 40.56

Verify 0.10

[1,280-bit Rabin-Williams keys on 550 MHz K6]

• Cost of public key algorithms significant
- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

• In contrast, symmetric algorithms much cheaper
- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN



Hybrid schemes

• Use public key to encrypt symmetric key
- Send message symmetrically encrypted:

KS ← {0, 1}128, {msg}KS
, {KS}KPub

• Use PK to negotiate secret session key
- E.g., Client sends server {K1, K2, K3, K4}KP

- Client sends server: {m1}K1
, MAC(K2, {m1}K1

)

- Server sends client: {m2}K3
, MAC(K4, {m2}K3

)

- Note: Better to MAC encryped data than vice versa

• Often want mutual authentication (client & server)
- Or more complex, user(s), client, & server



Server authentication

• An approach: Use public key cryptography
- Give client public key of server

- Lets client authenticate secure channel to server

• Problem: Key management problem
- How to get server’s public key?

- How to know the key is really server’s?



Otherwise: Attacker impersonates server

Attacker

Web ServerBrowser

• Man-in-the-middle attack:
- Attacker emulates server when talking to client

- Attacker emulates client when talking to server

- Attacker passes most messages through unmodified

- Attacker substitutes own public key for client’s & server’s

- Attacker records secret data, or tampers to cause damage



Key management

• Put public keys in the phone book
- How do you know you have the real phone book?

- How is a program supposed to use phone book
www.phonebook.com? (are you talking to real web server)

• Exchange keys with people in person

• “Web of trust” – get keys from friends you trust



Certification authorities
1. PubKey, $$$

4. PubKey, Certificate

3. Connection request

2. Certificate

Client

Certification
Authority

Server

• Everybody trusts some certification authority

• Everybody knows authority’s public key
- E.g., built into web browser


