
System design issues

• Systems often have many goals:
- Performance, reliability, availability, consistency, scalability,

security, versatility, modularity/simplicity

• Designers face trade-offs:
- Availability vs. consistency

- Scalability vs. reliability

- Reliability vs. performance

- Performance vs. modularity

- Modularity vs. versatility



Engineering vs. research

• Engineering:
- Find the right design point in the trade-off

- Minimize cost/benefit, etc.

• Research:
- Fundamentally alter the trade-offs

- Ideally get “best of both worlds”



Example: Scheduler activations

• Problem: Kernel-level threads suck
- Many expensive context switches

- Kernel doesn’t know about application-specific priorities

• Problem: User-level threads suck
- Scheduler doesn’t know which system calls block

• Solution: New kernel interface
- Expose information needed by user-level scheduler:

preemption, blocking system calls, I/O completion, . . .

- Provides the best of both worlds

- Facilitates other abastractions, too! (async I/O)



The end-to-end principle

router

user
kernel

kernel
hardware

Application
Library

user
kernel

kernel
hardware

Application
Library

• Place functionality closer to the endpoints



Example applications of principle

• Link-by-link reliable message delivery
- Often ensured by application (higher-level reply)

- Can’t trust every component of network

- Inappropriate for many applications (e.g., voice over IP)

• FIFO message delivery, duplicate suppression
- Redundant, just slows down two-phase commit, etc.

• Security and data integrity checks
- Only make sense end-to-end



Applying the end-to-end argument

• Keep lower-level functionality for performance
- E.g., Ethernet tries several times after a collision

- Avoids unnecessarily triggering TCP retransmits

• Provide “least common denominator” abstractions
- Can implement threads on async I/O, but not vice versa

- Can implement threads or async I/O on sched. activations

- Can implement POSIX on top of NFS, not vice versa

- Can implement file system on Petal, not vice versa



Hints for low-level abstraction design

• Expose information
- Lets applications/libraries make intelligent decisions

(Is thread runnable? How much memory is available?)

• Expose hardware and other low-level functionality
- Appel & Li: Exposing VM helps applications

- Frangipani: Exploits low-level block protocol, locks

• Avoid “outsmarting” higher-level software
- We still see papers on buffer cache mamagement (UBM)

- Maybe OS shouldn’t dictate the policy

- Exokernel provides lower-level interface than buffer cache



Example: Security and key management

• Traditional approach
- Application takes server name, provides secure abstraction

- SSL: server name → encrypted socket

- SSH: server name → encrypted remote login

- TAOS: user/server name → secure connection

• Problem: Many trade-offs in key management

• SFS (in lab 4): Key management in higher layer
- Expose public keys in pathnames:
/sfs/@class1.scs.cs.nyu.edu,wny5zs84js67egnhcq3aj2w5s8uymp4q

- Applications can use any key management

- Use file system itself to implement key management



Current research at NYU

• SUNDR secure file system
- End-to-end security requirement:

Users should read data written other legitimate users

- File system guarantees this without trusting server

• Coral content-distribution network
- Most P2P data storage systems dicate data placement

(E.g., store on closest node to ID in Chord or Pastry.)

- Also attempt to provide reliability and consistency

- Coral is optimized for placement of pointers
End nodes determine placement of data

- Gains efficiency by sacrificing consistency
(perfect when want some copy of data, not all)



Other lessons in system design
• Determine an application’s exact reliability needs

- RDBMS vs. DDS / web caching

• Determine application’s exact consistency needs
- Ficus: application-specific resolvers

- Bayou: general-purpose library, application-specific
reconciliation

• Find useful abstractions that are not overkill
- Petal (definitely), DDS (probably), Pastry/Scribe (maybe)

• Use feedback in allocating resources
- Hot bucket handling in Cache Resolver,

queue length in Mogul paper

- Shed work early in overload conditions (livelock)



Conclusions

• System designers face many trade-offs

• When possible, gain the best of both choices
- Rethink layer interfaces and abstractions

- Push functionality upwards (end-to-end priciple)

• High-performance servers particularly demanding
- Often uncomfortable fit on traditional OS abstractions

• Use “OS techniques” at application level



Brief Quiz Review



Transparent distributed systems

• Frangipani

• Amoeba

• Network Objects



Distributed system building blocks

• Ficus

• DDS

• Bayou

• Consistent hashing

• Scribe



Security

• TAOS

• BFS



Mechanisms

• Concurrency:
- Threads

- Asynchronous I/O

- RPC & Network objects

• Crash-recovery
- Write-ahead logging

- Snapshot/checkpoint functionality

• Distributed consistency: Two-phase commit, BFS

• Server selection: consistent hashing


