
Anatomy of a disk

• Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM

- Drives speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- Arms contain disk heads–one for each recording surface

- Heads read and write data to platters

Storage on a magnetic platter

• Platters divided into concentric tracks

• A stack of tracks of fixed radius is a cylinder

• Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

• Generally only one head active at a time
- Disks usually have one set of read-write circuitry

- Must worry about cross-talk between channels

- Hard to keep multiple heads exactly aligned

Disk positioning system

• Move head to specific track and keep it there
- Resist physical socks, imperfect tracks, etc.

• A seek consists of up to four phases:
- speedup–accelerate arm to max speed or half way point

- coast–at max speed (for long seeks)

- slowdown–stops arm near destination

- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)

• Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g

Seek details

• Head switches comparable to short seeks
- May also require head adjustment

- Settles take longer for writes than reads

• Disk keeps table of pivot motor power
- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- 500 ms recalibration every 25 min, bad for AV

• “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk,

Sectors
• Disk interface presents linear array of sectors

- Generally 512 bytes, written atomically

• Disk maps logical sector #s to physical sectors
- Zoning–puts more sectors on longer tracks

- Track skewing–sector 0 pos. varies for sequential I/O

- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector
mapping

- Larger logical sector # difference means larger seek

- Highly non-linear relationship (and depends on zone)

- OS has no info on rotational positions

- Can empirically build table to estimate times

Disk interface

• Controls hardware, mediates access

• Computer, disk often connected by bus (e.g., SCSI)
- Multiple devices may contentd for bus

- SCSI devices can disconnect during requests (+200 µs)

• Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information

• Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution

- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching
- But data not stable–not suitable for all requests

Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages
- Easy to implement

- Good fairness

• Disadvantages
- Cannot exploit request locality

- Increases average latency, decreasing throughput

Scheduling: First come first served (FCFS)

• Process disk requests in the order they are received

• Advantages
- Easy to implement

- Good fairness

• Disadvantages
- Cannot exploit request locality

- Increases average latency, decreasing throughput

Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages
- Exploits locality of disk requests

- Higher throughput

• Disadvantages
- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF
- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

Shortest positioning time first (SPTF)

• Always pick request with shortest seek time

• Advantages
- Exploits locality of disk requests

- Higher throughput

• Disadvantages
- Starvation

- Don’t always know what request will be fastest

• Improvement: Aged SPTF
- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages
- Takes advantage of locality

- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• Variant CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages
- Takes advantage of locality

- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

VSCAN(r)

• Continuum between SPTF and SCAN
- Like SPTF, but slightly uses “effective” positioning time

If request in same direction as previous seek: Teff = Tpos

Otherwise: Teff = Tpos + r · Tmax

- when r = 0, get SPTF, when r = 1, get SCAN

- E.g., r = 0.2 works well

• Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

[paper discussion]

Asynchronous programming model

• Many non-blocking file descriptors in one process
- Wait for pending I/O events on file many descriptors

- Each event triggers some callback function

• Lab: libasync – supports event-driven model
- Register callbacks on file descriptors

- Call amain() – main select loop

- Add/delete callbacks from within callbacks

callback.h

• Problem: Need state from one callback to next

• wrap bundles a function with its arguments

callback<void, int>::ref errwrite = wrap (write, 2);

(*errwrite) ("hello", 5); // writes "hello" to stderr

• void fdcb(int fd, selop op, cb t cb);

registers callbacks on file descriptor fd
- op is selread or selwrite

- cb is void callback (no arguments), or NULL to clear

libasync example server
void doaccept (int lfd) {

sockaddr_in sin;

bzero (&sin, sizeof (sin));

socklen_t sinlen = sizeof (sin);

int cfd = accept (lfd, (sockaddr *) &sin, &sinlen);

if (cfd >= 0) { /* ... */ }

}

int main (int argc, char **argv) {

// ...

int lfd = inetsocket (SOCK_STREAM, your_port, INADDR_ANY);

if (lfd < 0) fatal << "socket: " << strerror (errno) << "\n";

if (listen (lfd, 5) < 0) fatal ("listen: %m\n");

fdcb (lfd, selread, wrap (doaccept, lfd));

amain ();

}

