
The different Unix contexts

• User-level

• Kernel “top half”
- System call, page fault handler, kernel-only process, etc.

• Software interrupt

• Device interrupt

• Timer interrupt (hardclock)

• Context switch code



Transitions between contexts

• User→ top half: syscall, page fault

• User/top half→ device/timer interrupt: hardware

• Top half→ user/context switch: return

• Top half→ context switch: sleep

• Context switch→ user/top half



Top/bottom half synchronization

• Top half kernel procedures can mask interrupts

int x = splhigh ();

/* ... */

splx (x);

• splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, . . .

• Masking interrupts in hardware can be expensive
- Optimistic implementation – set mask flag on splhigh,

check interrupted flag on splx



Kernel Synchronization
• Need to relinquish CPU when waiting for events

- Disk read, network packet arrival, pipe write, signal, etc.

• int tsleep(void *ident, int priority, ...);

- Switches to another process

- ident is arbitrary pointer—e.g., buffer address

- priority is priority at which to run when woken up

- PCATCH, if ORed into priority, means wake up on signal

- Returns 0 if awakened, or ERESTART/EINTR on signal

• int wakeup(void *ident);

- Awakens all processes sleeping on ident

- Restores SPL a time they went to sleep
(so fine to sleep at splhigh)



Process scheduling

• Goal: High throughput
- Minimize context switches to avoid wasting CPU, TLB

misses, cache misses, even page faults.

• Goal: Low latency
- People typing at editors want fast response

- Network services can be latency-bound, not CPU-bound

• BSD time quantum: 1/10 sec (since ∼1980)
- Empirically longest tolerable latency

- Computers now faster, but job queues also shorter



Scheduling algorithms

• Round-robin

• Priority scheduling

• Shortest process next (if you can estimate it)

• Fair-Share Schedule (try to be fair at level of users,
not processes)



Multilevel feeedback queues (BSD)

• Every runnable proc. on one of 32 run queues
- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

• Idea: Favor interactive jobs that use less CPU



Process priority

• p nice – user-settable weighting factor

• p estcpu – per-process estimated CPU usage
- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p estcpu←

(

2 · load

2 · load + 1

)

p estcpu + p nice

• Run queue determined by p usrpri/4

p usrpri← 50 +

(

p estcpu

4

)

+ 2 · p nice

(value clipped if over 127)



Sleeping process increases priority

• p estcpu not updated while asleep
- Instead p slptime keeps count of sleep time

• When process becomes runnable

p estcpu←

(

2 · load

2 · load + 1

)p slptime

× p estcpu

- Approximates decay ignoring nice and past loads



Discussion

• 10 people running vi have 1 sec latency?

• How do UNIX signals work?
- What if signal arrives while process in “top half”

• Does UNIX kernel suffer from priority inversion?



Real-time scheduling

• Two categories:
- Soft real time—miss deadline and CD will sound funny

- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., procs A, B, C must be scheduled every 100, 200,

500 msec, require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period
≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first (works if schedulable)



Multiprocessor scheduling issues

• For TLB and cache, care about which CPU
- Affinity scheduling—try to keep threads on same CPU

• Want related processes scheduled together
- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often
(otherwise would spend all their time waiting)

• Gang scheduling—schedule all CPUs
synchronously

- With synchronized quanta, easier to schedule related
processes/threads together



Lottery scheduling

• Issue lottery tickets to processes
- Let pi have ti tickets, let T =

∑

i

ti

- Chance of winning next quantum is ti/T .

• Control avg. proportion CPU for each process
- Can also group processes hierarchically for control

- Subdivide lottery tickets allocated to a particular process

- Modeled as currencies, funded through other currencies

• Can transfer tickets to other processes
- Perfect for IPC

- Avoids priority inversion with mutexes



Compensation tickets

• What if proc. only uses fraction f of quantum
- Say A and B have same number of lottery tickets

- Proc. A uses full quantum, proc. B uses f fraction

- Each wins the lottery as often

- B gets fraction f of B’s CPU time. No fair!

• Solution: Compensation tickets
- If B uses f of quantum, inflate B’s tickets by 1/f until it

next wins CPU

- E.g., process that uses half of quantup gets schecules twice
as often


