Keeping communications secret

e Encryption guarantees secrecy

e Symmetric encryption
- Encryption algorithm comprises two functions £ and D

- To communicate secretly, parties share secret key K
Given message M, E(K,M) — C,D(K,C) — M

M is plaintext, C' is ciphertext

Attacker cannot derive M from C without K

e Most common algorithm type: Block cipher
- AES from Lab 4 is a block cipher
- Operates on fixed-size blocks (e.g., 64 or 128 bits)

- Maps plaintext blocks to same size ciphertext blocks

Example block cipher (blowfish)

Plaintext
32 bit |64 bit 32 bit
p1_32 bi t@
32 hit = 32 bit AN
N
P2—=p
F (N
N
13 Morelterations__
P16——
F 4R\
Y
P18——(P P17——P
32 bit 32 bit
Y64 bit
Ciphertext

e Derive F' and 18 subkeys
from Key—P, ... Pg

e Divide plaintext block into
two halves, L, and R,

e Ri=L;,_1®F
Li=R,_1 ® F(R;)

o Ri7=Lis® Py
Li7 = Ri6 © Pig

o Output L7 Ry5.

(Note: This is just to give an idea; it’s not a complete description)

Problem: Integrity

o Attacker can tamper with messages

- E.g., corrupt a block to flip a bit in next

e What if you delete original file after transfer?

- Might have nothing but garbage at recipient

e Encryption does not guarantee integrity

- A system that uses encryption alone (no integrity check) is
often incorrectly designed.

- Exception: Cryptographic storage like lab 4 (just protects
against stolen or copied data)

Message authentication codes

e Message authentication codes (MACs)
- Sender & receiver share secret key K
- On message m, MAC(K, m) — v

- Attacker cannot produce valid (m, v) without K

e To send message securely, append MAC
- Send {m, MAC(K,m)}, or encrypt {m, MAC(K, m)} k-
- Receiver of {m, v} checks v = MAC(K,m)}

e Careful of Replay — don’t believe previous {m, v}

Cryptographic hashes

e Hash arbitrary-length input to fixed-size output
- Typical output size 128 or 160 bits

- Cheap to compute on large input (faster than network)

e Collision-resistant: Computationally infeasible to
findz #y, H(z) = H(y)
- Many such collisions exist

- No one has been able to find one, even after analyzing the
alrogithm

e Several hashes in common use (SHA-1, MD5)

Applications of cryptographic hashes

e Small hash uniquely specifies large data
- Hash a file, remember the hash value
- Recompute hash later, if same value no tampering

- Hashes often published for software distribution

e HMAC(K,m) = H(K @ opad, H(K @ ipad, m))
- H is a cryptographic hash like SHA-1
- ipad is 0x36 repeated 64 times, opad 0x5c repeated 64 times

Public key encryption

e Three randomized algorithms:
- Generate — G(1¥) — K, K1
- Encrypt - E(K,m) — {m} g
- Decrypt - D(K—',{m}g) — m

e Provides secrecy, like conventional encryption

- Can’t derive m from {m} i without knowing K ~—*

e Encryption key K can be made public
- Can’t derive K~ ! from K

- Everyone can use the same public key to encrypt messages
for one recipient.

Digital signatures

e Three (randomized) algorithms:
- Generate — G(1%) — K, K1
- Sign—-S (K~t,m) — {m}x—
- Verify -V (K,{m}g-1,m) — {true, false}

e Provides integrity, like a MAC

- Cannot produce valid (m, {m} x-1) pair without K !

e Many keys support both signing & encryption
- But Encrypt/Decrypt and Sign/ Verify different algorithms!

- Common error: Sign by “encrypting” with private key

Cost of cryptographic operations

Operation | msec

Encrypt 1.11
Decrypt 39.62
Sign 40.56
Verity 0.10

[1,280-bit Rabin-Williams keys on 550 MHz K6]

e Cost of public key algorithms significant
- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

¢ In contrast, symmetric algorithms much cheaper
- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN

Hybrid schemes

e Use public key to encrypt symmetric key

- Send message symmetrically encrypted:
Kg {07 1}1287 {msg}st {KS}KPub

e Use PK to negotiate secret session key

- E.g., Client sends server { K1, Ko, K3, K4} i,
Client sends server: {m1}g,, MAC (K5, {m1}x,)
Server sends client: {ms} k., MAC (K4, {m2}k,)

Note: Better to MAC encryped data than vice versa

e Often want mutual authentication (client & server)

- Or more complex, user(s), client, & server

Server authentication

e An approach: Use public key cryptography
- Give client public key of server

- Lets client authenticate secure channel to server

e Problem: Key management problem
- How to get server’s public key?

- How to know the key is really server’s?

Otherwise: Attacker impersonates server

[Browser]‘ »[Web %rver

- -Attacker-]

e Man-in-the-middle attack:

Attacker emulates server when talking to client

Attacker emulates client when talking to server

Attacker passes most messages through unmodified

Attacker substitutes own public key for client’s & server’s

Attacker records secret data, or tampers to cause damage

Key management

e Put public keys in the phone book
- How do you know you have the real phone book?

- How is a program supposed to use phone book
www.phonebook.com? (are you talking to real web server)

e Exchange keys with people in person

o “Web of trust” — get keys from friends you trust

Certification authorities

B 1. PubKey, $$$

Certificati on\
Authority

2. Certificate

[Client

e Everybody trusts some ce

N 3. Connection request »(
Server J

J< 4. PubKey, Certificate

rtification authority

e Everybody knows authority’s public key

- E.g., built into web browser

