
Vnodes

• Every open file has an associated vnode struct

• All file system types (FFS, NFS, etc.) have vnodes
- v data points to FS-specific data

- Function pointers for operations (open/read/write/. . . )

• When refcount → 0, inactive() called
- Does not “deallocate” vnode—caches it

- Files can very efficiently be reopened before deallocation

- reclaim() revokes vnode for another use



Name cache

• Caches 〈dir, name〉 → vnode translations
- Both positive and negative lookups cached

• Need to invalidate all names for a vnode (mv dir)
- Each vnode has a “capability,” also contained in cache

- Bump 32-bit capability to flush cache efficiently

- When counter wraps, invalidate all of name cache

• Need to invalidate negative lookups when
directory changed

- Bump capability



Buffer cache

• Caches file blocks in memory
- Hash table maps 〈vnode, offset〉 → buffer

- Freelists keep buffers not in use

• Operations on buffers:
- bread() – fill buffer from underlying file

- breadn() – like bread(), but start read ahead

- brelse() – relinquish unmodified buffer

- bwrite() – synchronously write data to disk

- bawrite() – asynchronously write data to disk

- bdwrite() – schedule delayed write



Write policies

• When to use synchronous bwrite()?
- fsync() system call

- Network file systems with synchronous writes

- When cleaning reclaimed buffer

- When order of disk writes matters

• When to use bdwrite()?
- Buffer may be modified again

• When to use bawrite()?
- Buffer full, might as well clean it



Buffer free lists

• Locked – unused (for superblock?)

• LRU – (or can replace with different algorithm)

• Age
- Deleted files pushed onto front (reuse immediately)

- Read-ahead blocks placed at end

• Empty
- No physical memory



Algorithm: Optimal

• Definition: Maximize #hits/#references
- Evict block that will be referenced furthest in the future

• How to implement
- Gather trace of all references

- Retroactively figure out what you should have done

• Useful only as a point of comparison

• LRU used to approximate algorithm
- Most recently touched most likely to be touched soon

• If you could implement Optimal, is it best?
- Best hit rate, but what about fairness?



Algorithm: FBR

• Idea: Weight blocks by frequency of reference
- Count # of references

- Evict blocks with lowest counts

• Problem: Many short-spaced references, then none
- Don’t bump count in “new” section of LRU queue

• Problem: Evicted right as blocks leave new
- Only evict in “old” section of queue

• Problem: Never evict blocks with high count
- Decay by half when total of counts reach some max



Algorithm: LRU-k

• LRU based on kth most recent access

• Regular LRU is LRU-1

• LRU-2 works well in practice
- Great for walking indexed data structures

• Computationally expensive
- Costs log N to manipulate buffer (with cache size N )



Algorithm: 2Q

• Goal: Cheaper algorithm with benefits of LRU-2

• Idea: Keep 2 queues:
- A1 for buffers accessed only once – FIFO

- Am for buffers accessed multiple times – LRU

• Problem: Sizing A1 vs. Am is hard

• Solution: Ghost buffers
- Break A1 into A1in and A1out

- A1out doesn’t actually contain buffered data



Algorithm: SEQ

• Detect sequential accesses

• Apply MRU to pages fetched by sequential access

• Does not detect looping behavior



EELRU

• Idea: Ordinarily use simple LRU
- If many recently fetched pages being evicted, move to

fallback algorithm.

• Divide LRU queue into three regions
- LRU region – most recently accessed pages

- early region – less recently accessed pages

- late region – even less recently accessed pages

- Use ghost buffers to track more buffers than memory size

• Evict from head of early or head of late point,
based on mathematical predictions



Informed Prefetching & Caching [PGGSZ95]

• Idea: Improve I/O performance by giving OS hints

• What is a hint in computer systems?
- Information that may improve performance

- Does not have to be true (will not affect correctness)

- Does not have to be heeded by system

• Two kinds of hints: Advice & Disclosure
- Advice—suggested policy, e.g., “use MRU for this file”

- Disclosure–gives notice of how App. will use OS interface,
e.g., “App. will read file 4 times”

• Which is a better: Advice or disclosure?



Advantages of disclosure

• Remains correct when environment changes
- Increases portability of application to different hardware

• Gives OS more info =⇒ More robust
- OS may not be able to follow every process’s advice

e.g., not enough buffers to prefetch everything

- Disclosure allows OS to optimize for actual resources

• Hints uses same abstractions as later operations
- I.e., specified with fd/offsets, not inode/buffers

- Better modularity



Disclosure interface
• Added disclosure ioctl call w. two arguments

- File specifier: File descriptor or file name

- Pattern specifier: Whole file, or list of 〈offset,len〉 pairs

• OS weighs needs/resources of hints vs. demand

hinted sequence

cached blocks

LRU queue

Buffer Consumers

Bufferdemand
benefit

Buffer Suppliers

Allocator

LRU cost

service
demand

miss

prefetch
benefit ejection cost

hinted sequence

prefetched blocks cached blocks hinted sequence

demand miss

prefetch

LRU cache

hinted cache



Using speculative execution [CG99]

• Disclosure requires programmer to insert hints

• Idea: Automatically generate hints with spec. exec.
- Application stalls waiting for a read

- Spawn another thread, and continue executing w/o data

- Issue prefetches for any further accesses

• Preventing side effects in speculative thread
- Disallow all system calls except fstat (& sbrk)

- Catch signals in case of errors like divide-by-zero

- Implement software copy-on-write—Make two copies of
application text segment, instrument one for CoW

• Results: 20-70% improvement on many apps


