
Keeping communications secret

• Encryption guarantees secrecy

• Symmetric encryption
- Encryption algorithm comprises two functions E and D

- To communicate secretly, parties share secret key K

- Given message M , E(K, M)→ C, D(K, C)→M

- M is plaintext, C is ciphertext

- Attacker cannot derive M from C without K

• Most common algorithm type: Block cipher
- AES from Lab 4 is a block cipher

- Operates on fixed-size blocks (e.g., 64 or 128 bits)

- Maps plaintext blocks to same size ciphertext blocks



Example block cipher (blowfish)

Ciphertext

P1

P2

P16

P17P18

Plaintext

32 bit 32 bit

32 bit 32 bit

64 bit

64 bit

32 bit32 bit

32 bit

F

F

F

13 More Iterations

• Derive F and 18 subkeys
from Key—P1 . . . P18

• Divide plaintext block into
two halves, L0 and R0

• Ri = Li−1 ⊕ Pi

Li = Ri−1 ⊕ F (Ri)

• R17 = L16 ⊕ P17

L17 = R16 ⊕ P18

• Output L17R17.

(Note: This is just to give an idea; it’s not a complete description)



Problem: Integrity

• Attacker can tamper with messages
- E.g., corrupt a block to flip a bit in next

• What if you delete original file after transfer?
- Might have nothing but garbage at recipient

• Encryption does not guarantee integrity
- A system that uses encryption alone (no integrity check) is

often incorrectly designed.

- Exception: Cryptographic storage like lab 4 (just protects
against stolen or copied data)



Message authentication codes

• Message authentication codes (MACs)
- Sender & receiver share secret key K

- On message m, MAC(K, m)→ v

- Attacker cannot produce valid 〈m, v〉without K

• To send message securely, append MAC
- Send {m, MAC(K, m)}, or encrypt {m, MAC(K, m)}K′

- Receiver of {m, v} checks v
?
= MAC(K, m)}

• Careful of Replay – don’t believe previous {m, v}



Cryptographic hashes

• Hash arbitrary-length input to fixed-size output
- Typical output size 128 or 160 bits

- Cheap to compute on large input (faster than network)

• Collision-resistant: Computationally infeasible to
find x 6= y, H(x) = H(y)

- Many such collisions exist

- No one has been able to find one, even after analyzing the
alrogithm

• Several hashes in common use (SHA-1, MD5)



Applications of cryptographic hashes

• Small hash uniquely specifies large data
- Hash a file, remember the hash value

- Recompute hash later, if same value no tampering

- Hashes often published for software distribution

• HMAC(K, m) = H(K ⊕ opad, H(K ⊕ ipad, m))

- H is a cryptographic hash like SHA-1

- ipad is 0x36 repeated 64 times, opad 0x5c repeated 64 times



Public key encryption

• Three randomized algorithms:
- Generate – G(1k)→ K, K−1

- Encrypt – E(K, m)→ {m}K

- Decrypt – D(K−1, {m}K)→ m

• Provides secrecy, like conventional encryption
- Can’t derive m from {m}K without knowing K−1

• Encryption key K can be made public
- Can’t derive K−1 from K

- Everyone can use the same public key to encrypt messages
for one recipient.



Digital signatures

• Three (randomized) algorithms:
- Generate – G(1k)→ K, K−1

- Sign – S
(

K−1, m
)

→ {m}K−1

- Verify – V (K, {m}K−1 , m)→ {true, false}

• Provides integrity, like a MAC
- Cannot produce valid 〈m, {m}K−1〉 pair without K−1

• Many keys support both signing & encryption
- But Encrypt/Decrypt and Sign/Verify different algorithms!

- Common error: Sign by “encrypting” with private key



Cost of cryptographic operations

Operation msec

Encrypt 1.11

Decrypt 39.62

Sign 40.56

Verify 0.10

[1,280-bit Rabin-Williams keys on 550 MHz K6]

• Cost of public key algorithms significant
- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

• In contrast, symmetric algorithms much cheaper
- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN



Hybrid schemes

• Use public key to encrypt symmetric key
- Send message symmetrically encrypted:

KS ← {0, 1}128, {msg}KS
, {KS}KPub

• Use PK to negotiate secret session key
- E.g., Client sends server {K1, K2, K3, K4}KP

- Client sends server: {m1}K1
, MAC(K2, {m1}K1

)

- Server sends client: {m2}K3
, MAC(K4, {m2}K3

)

- Note: Better to MAC encryped data than vice versa

• Often want mutual authentication (client & server)
- Or more complex, user(s), client, & server



Server authentication

• An approach: Use public key cryptography
- Give client public key of server

- Lets client authenticate secure channel to server

• Problem: Key management problem
- How to get server’s public key?

- How to know the key is really server’s?



Otherwise: Attacker impersonates server

Attacker

Web ServerBrowser

• Man-in-the-middle attack:
- Attacker emulates server when talking to client

- Attacker emulates client when talking to server

- Attacker passes most messages through unmodified

- Attacker substitutes own public key for client’s & server’s

- Attacker records secret data, or tampers to cause damage



Key management

• Put public keys in the phone book
- How do you know you have the real phone book?

- How is a program supposed to use phone book
www.phonebook.com? (are you talking to real web server)

• Exchange keys with people in person

• “Web of trust” – get keys from friends you trust



Certification authorities
1. PubKey, $$$

4. PubKey, Certificate

3. Connection request

2. Certificate

Client

Certification
Authority

Server

• Everybody trusts some certification authority

• Everybody knows authority’s public key
- E.g., built into web browser


