
Abstractions

• We said OS provides protection and abstraction

• What kind of abstractions?
- Process—address space, thread of control, user ID

- File System

- Pipe/Socket—local IPC, network communication

• How to use interface?

for (;;) {

read_from_network ();

parse_request ();

read_from_disk ();

write_to_network ();

}

Synchronous server

Network

CPU

Disk

• OS handles the disk/network read/write

• Becomes more useful with multiple processes

Concurrent server

Network

CPU

Disk

• Overlapping operations makes for higher resource
utilization

Traditional OS structure

VM

lib
kernel
user lib lib

applic. applic. applic.

syscall
sockets

NIC

syscall

disk
FS

context switch

device interrupts
TCP retransmits, ...

disk

pg fault

• One large piece of software in supervisor mode
- Offers convenient, portable high-level programming model

- Easy for kernel subsystems to cooperate (FS, disk driver, buffer
cache all just communicate through procedure calls)

Example: OpenBSD/x86 System call

• Application: read (fd, buf, len);

• C Library:
- Ensure fd, buf, len on stack

- Put 0x3 (syscall no. SYS read) in designated register

- Execute INT instruction (e.g., int $0x80)

• INT instruction
- Sets privileged mode bit

- Sets SP to kernel stack

- Saves a few user registers on stack (e.g., user IP, SP)

Finishing the system call

• Kernel trap handler
- Fix up any remaining state (e.g., segmentation regs)

- Copy arguments in from user stack

- Transfer control to sys read () (ordinary C function)

• sys mkdir ()

- Calls FS→ buffer cache

- Copies data out to application, returns

• Back in trap handler
- iret instruction restores regs, returns to user mode

What if read missed in buffer cache?

• sys read ()

- Invokes FS→ Disk driver→ sleep→ switch

• switch
- Saves all state of current process

- Finds a process to run (or jumps to idle loop)

- Switch address spaces, continue process

• Later, disk interrupt signals I/O completion
- Set flag saying want to reschedule mkdir proc. again

- Preempt current proc—make it call switch

- Switches address space, our sleep returns

Drawbacks of traditional kernels

• All privileged, room for many bugs
- Developing new OS abstractions painful (crash→reboot)

- Bad OS code destabilizes whole system
Hard to convince people to run your OS extension

• Limits flexibility
- Want multiple threads per process?

- Want single thread crossing into a different address space?

- Want control disk layout of files for performance?

- Don’t like the kernel’s TCP implementation?

Alternative: µkernels

FS

device interrupts
context switch

kernel IPC
user

IPC IPC
lib

applic.
Server

VM
Server

• Move complex abstractions to server processes
- Kernel mostly handles IPC

- Also grants hardware access to privileged servers

CISC vs. RISC

• CISC = complex instruction set computing
- One instruction may do many things (e.g., strcpy)

- One instruction can take many cycles

- Often variable-length instructions, special-purpose registers
e.g., stack push & pop inst specific to sp register

• RISC = reduced instruction set computing
- Fixed-length instructions, many general purpose registers

- Hardwired control, exposed pipeline

RISC philosophy

• Simpler instructions→ faster implementation
- w/o stalls, retire one instruction every cycle

- more instructions, but faster so isn’t usually a problem?

• Don’t do in hardware what can be left to software

• Optimize for the common case
- Don’t waste silicon for uncommon operations like system

calls

- Use transistors to make ADD fast instead!

• How to to decide what’s common?
- Industry standard benchmarks like SPEC

Example: MIPS

• 31 general purpose registers (29 usable)
- Fixed-length instructions include 5 bits for each register

- Any instruction can operate on any register

- By convention divide into caller & callee saved registers

• Load/store architecture
- ALU operations only on registers (e.g. R1← R2 + R3)

• Exposed pipeline – delay slots
- Branch delay slot – instruction after branch always executed

(Delay slot instruction must be idempotent–why?)

- Load delay slot – can’t use register right after loading it

MIPS Traps & Exceptions

• Most traps/system calls vector to the same location
- Software demultiplexes different types of exception

• Software-managed TLB has optimized fault handler
- Hardware vectors directly to fault handler

- Two registers reserved for use by TLB miss handler

- Handler + most of kernel run in unmapped memory,
but page tables mapped, so handler is allowed to fault

• No atomic read-modify-write memory operations
- Requires trap to the kernel

Example: SPARC

• Wanted even more registers
- Since ALU operations only work on registers

- Plus loads/stores are slow

- But can’t fit more bits for register number in instructions

• New mechanism: Register windows
- Divide registers into 7 global, 8 in, 8 out, 8 local

- On procedure call, rotate windows (in← out, new in+local)

- Trap on window overflow/underflow (kernel saves values
to stack)

• Also conditional branch delay slots
- Slot instruction executed only if branch taken

CISC revisited

• Do we care about RISC now?
- Still in use for niche markets (Mac, 64-bit apps., . . .)

- But most machines are now x86/Pentium

• Still, Pentium shares many properties with RISC
- Since PentiumPro, internally translates code to RISC-like

instructions

- Deep pipelines (Pentium IV particularly)

• Legacy instruction sets make some operations even more
expensive than on RISCs

- Traps to kernel (int) many cycles (manipulates the stack)

- Trap handler code expensive (e.g., must load segment registers)

- Context switch requires TLB flush

