
Multiprogramming on physical memory

• Makes it hard to allocate space contiguously
- Convenient for stack, large data structures, etc.

• Need fault isolation between processes
- Someone else testing tcpproxy on your machine. . .

• Processes can consume more than available memory
- Dormant processes (wating for event) still have core images



Solution: Address Spaces

• Give each program its own address space

• Only “privileged” software can manipulate
mappings

• Isolation is natural
- Can’t even name other proc’s memory



Alternatives

• Segmantation
- Part of each memory reference implicit in segment register

segreg← 〈offset, limit〉

- By loading segment register code can be relocated

- Can enforce protection by restricting segment register loads

• Language-level protection (Java)
- Single address space for different modules

- Language enforces isolation

• Software fault isolation
- Instrument compiler output

- Checks before every store operation prevents modules from
trashing each other



Paging

• Divide memory up into small “pages”

• Map virtual pages to physical pages
- Each process has separate mapping

• Allow OS to gain control on certain operations
- Read-only pages trap to OS on write

- Invalid pages trap to OS on write

- OS can change mapping and resume application

• Other features sometimes found:
- Hardware can set “dirty” bit

- Control caching of page



Example: Paging on PDP-11

• 64K virtual memory, 8K pages

• 8 Instruction page translations, 8 Data page
translations

• Swap 16 machine registers on each context switch



Example: VAX

• Virtual memory partitioned
- First 2 Gigs for applications

- Last 2 Gigs for OS—mapped same in all address spaces

- One page table for system memory, one for each process

• Each user page table is 8 Megabytes
- 512-byte pages, 4 bytes/translation,

1 Gig for application (not counting stack)

• User page tables stored in paged kernel memory
- No need for 8 physical Megs/proc. only virtual



Example: MIPS

• Hardware has 64-entry TLB
- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
- All of physical memory contiguously mapped in high VM

- Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables



Example: Paging on x86

• Page table: 1024 32-bit translations for 4 Megs of
Virtual mem

• Page directory: 1024 pointers to page tables

• %cr3—page table base register

• %cr0—bits enable protection and paging

• INVLPG – tell hardware page table modified
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64-bit address spaces

• Some machines have 64-bit virtual address spaces

• Makes hierarchical page tables inconvenient
- E.g., might need to walk five levels of table on page fault!

• Solution: Hashed page tables
- Store Virtual→ Physical translations in hash table

- Table size proportional to physical memory

• Precludes hardware table walking
- Not a problem with large enough software-controlled TLB



OS effects on application performance

• Page replacement
- Optimal – Least soon to be used (impossible)

- Least recently used (hard to implement)

- Random

- Not recently used

• Direct-mapped physical caches
- Virtual→ Physical mapping can affect performance

- Applications can conflict with each other or themselves

- Scientific applications benefit if consecutive virtual pages to
not conflict in the cache

- Many other applications do better with random mapping



Paging in day-to-day use

• Demand paging

• Shared libraries

• Shared memory

• Copy-on-write (fork, mmap, etc.)



VM system calls

• void *mmap (void *addr, size t len, int prot,

int flags, int fd, off t offset)

- prot: OR of PROT EXEC, PROT READ, PROT WRITE, PROT NONE

- flags: shared/private, . . .

• int munmap(void *addr, size t len)

- Removes memory-mapped object

• int mprotect(void *addr, size t len, int prot)

- Changes protection on pages to or of PROT . . .

• int mincore(void *addr, size t len, char *vec)

- Returns in vec which pages present



Catching page faults

struct sigaction {

union { /* signal handler */

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *);

};

sigset_t sa_mask; /* signal mask to apply */

int sa_flags;

};

int sigaction (int sig, const struct sigaction *act,

struct sigaction *oact)

• Can specify function to run on SIGSEGV



Example: OpenBSD/i386 siginfo
struct sigcontext {

int sc_gs; int sc_fs; int sc_es; int sc_ds;

int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;

int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */

int sc_eflags; /* condition codes, etc. */

int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */

int sc_mask; /* signal mask to restore */

int sc_trapno;

int sc_err;

};



Advantages/disadvantages of paging

• What happens to user/kernel crossings?
- More crossings into kernel

- Pointers in syscall arguments must be checked

• What happens to IPC?
- Must change hardware address space

- Increases TLB misses

- Context switch flushes TLB entirely on x86
(But not on MIPS. . . Why?)



Example: 4.4 BSD VM system

• Each process has a vmspace structure containing
- vm map – machine-independent virtual address space

- vm pmap – machine-dependent data structures

- statistics – e.g. for syscalls like getrusage ()

• vm map is a linked list of vm map entry structs
- vm map entry covers contiguous virtual memory

- points to vm object struct

• vm object is source of data
- e.g. vnode object for memory mapped file

- points to list of vm page structs (one per mapped page)

- shadow objects point to other objects for copy on write
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Pmap (machine-dependent) layer

• Pmap layer holds architecture-specific VM code

• VM layer invokes pmap layer
- On page faults to install mappings

- To protect or unmap pages

- To ask for dirty/accessed bits

• Pmap layer is lazy and can discard mappings
- No need to notify VM layer

- Process will fault and VM layer must reinstall mapping

• Pmap handles restrictions imposed by cache



Example uses

• vm map entry structs for a process
- r/o text segment→ file object

- r/w data segment→ shadow object→ file object

- r/w stack→ anonymous object

• New vm map entry objects after a fork:
- Share text segment directly (read-only)

- Share data through two new shadow objects
(must share pre-fork but not post fork changes)

- Share stack through two new shadow objects

• Must discard/collapse superfluous shadows
- E.g., when child process exits



What happens on a fault?

• Traverse vm map entry list to get appropriate entry
- No entry? Protection violation? Send process a SIGSEGV

• Traverse list of [shadow] objects

• For each object, traverse vm page structs

• Found a vm page for this object?
- If first vm object in chain, map page

- If read fault, install page read only

- Else if write fault, install copy of page

• Else get page from object
- Page in from file, zero-fill new page, etc.


