
Abstractions

• We said OS provides protection and abstraction

• What kind of abstractions?
- Process—address space, thread of control, user ID

- File System

- Pipe/Socket—local IPC, network communication

• How to use interface?

for (;;) {

read_from_network ();

parse_request ();

read_from_disk ();

write_to_network ();

}



Synchronous server
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• OS handles the disk/network read/write

• Becomes more useful with multiple processes



Concurrent server
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• Overlapping operations makes for higher resource
utilization



Traditional OS structure
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• One large piece of software in supervisor mode
- Offers convenient, portable high-level programming model

- Easy for kernel subsystems to cooperate (FS, disk driver, buffer
cache all just communicate through procedure calls)



Example: OpenBSD/x86 System call

• Application: read (fd, buf, len);

• C Library:
- Ensure fd, buf, len on stack

- Put 0x3 (syscall no. SYS read) in designated register

- Execute INT instruction (e.g., int $0x80)

• INT instruction
- Sets privileged mode bit

- Sets SP to kernel stack

- Saves a few user registers on stack (e.g., user IP, SP)



Finishing the system call

• Kernel trap handler
- Fix up any remaining state (e.g., segmentation regs)

- Copy arguments in from user stack

- Transfer control to sys read () (ordinary C function)

• sys mkdir ()

- Calls FS→ buffer cache

- Copies data out to application, returns

• Back in trap handler
- iret instruction restores regs, returns to user mode



What if read missed in buffer cache?

• sys read ()

- Invokes FS→ Disk driver→ sleep→ switch

• switch
- Saves all state of current process

- Finds a process to run (or jumps to idle loop)

- Switch address spaces, continue process

• Later, disk interrupt signals I/O completion
- Set flag saying want to reschedule mkdir proc. again

- Preempt current proc—make it call switch

- Switches address space, our sleep returns



Drawbacks of traditional kernels

• All privileged, room for many bugs
- Developing new OS abstractions painful (crash→reboot)

- Bad OS code destabilizes whole system
Hard to convince people to run your OS extension

• Limits flexibility
- Want multiple threads per process?

- Want single thread crossing into a different address space?

- Want control disk layout of files for performance?

- Don’t like the kernel’s TCP implementation?



Alternative: µkernels
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• Move complex abstractions to server processes
- Kernel mostly handles IPC

- Also grants hardware access to privileged servers



CISC vs. RISC

• CISC = complex instruction set computing
- One instruction may do many things (e.g., strcpy)

- One instruction can take many cycles

- Often variable-length instructions, special-purpose registers
e.g., stack push & pop inst specific to sp register

• RISC = reduced instruction set computing
- Fixed-length instructions, many general purpose registers

- Hardwired control, exposed pipeline



RISC philosophy

• Simpler instructions→ faster implementation
- w/o stalls, retire one instruction every cycle

- more instructions, but faster so isn’t usually a problem?

• Don’t do in hardware what can be left to software

• Optimize for the common case
- Don’t waste silicon for uncommon operations like system

calls

- Use transistors to make ADD fast instead!

• How to to decide what’s common?
- Industry standard benchmarks like SPEC



Example: MIPS

• 31 general purpose registers (29 usable)
- Fixed-length instructions include 5 bits for each register

- Any instruction can operate on any register

- By convention divide into caller & callee saved registers

• Load/store architecture
- ALU operations only on registers (e.g. R1← R2 + R3)

• Exposed pipeline – delay slots
- Branch delay slot – instruction after branch always executed

(Delay slot instruction must be idempotent–why?)

- Load delay slot – can’t use register right after loading it



MIPS Traps & Exceptions

• Most traps/system calls vector to the same location
- Software demultiplexes different types of exception

• Software-managed TLB has optimized fault handler
- Hardware vectors directly to fault handler

- Two registers reserved for use by TLB miss handler

- Handler + most of kernel run in unmapped memory,
but page tables mapped, so handler is allowed to fault

• No atomic read-modify-write memory operations
- Requires trap to the kernel



Example: SPARC

• Wanted even more registers
- Since ALU operations only work on registers

- Plus loads/stores are slow

- But can’t fit more bits for register number in instructions

• New mechanism: Register windows
- Divide registers into 7 global, 8 in, 8 out, 8 local

- On procedure call, rotate windows (in← out, new in+local)

- Trap on window overflow/underflow (kernel saves values
to stack)

• Also conditional branch delay slots
- Slot instruction executed only if branch taken



CISC revisited

• Do we care about RISC now?
- Still in use for niche markets (Mac, 64-bit apps., . . . )

- But most machines are now x86/Pentium

• Still, Pentium shares many properties with RISC
- Since PentiumPro, internally translates code to RISC-like

instructions

- Deep pipelines (Pentium IV particularly)

• Legacy instruction sets make some operations even more
expensive than on RISCs

- Traps to kernel (int) many cycles (manipulates the stack)

- Trap handler code expensive (e.g., must load segment registers)

- Context switch requires TLB flush


