G22.3250 — Honors Operating Systems

David Mazieres
715 Broadway, #708

dm@cs.nyu.edu

Administrivia

e All assignments are on the web page
http://www.scs.cs.nyu.edu/G22.3250/

e Part of each class will be spent discussing papers

- Read the papers before class

e Grading based on four factors
- Participation in discussion (so read the papers before class!)
- Midterm and Final Quiz
- Lab assignments

- Final project

Handouts today

e Account information form
- Will give you access to dedicated class machines for lab
- Accounts will be created Friday

- Email me if you don’t hear from me by Friday

e Access form for 7th floor of 715 Broadway
- So you can come to my office hours

- Only if you don’t already have access (PhD students do)
e Using TCP through sockets (on web page)

e First lab goes on-line Friday (on web page)

Course topics I

e Core operating systems
- User/kernel APIs & performance issues

- Concurrency—threads & async programming

Virtual memory

Scheduling

Implementing network protocol stacks

High-performance device and driver issues

File systems

I/0 abstractions & Kernel design

Course topics 11

e Distributed systems topics

Distributed shared memory

Distributed file systems

Network obijects
Scalability

Replication & consistency

Cryptography and security

Peer-to-peer systems

e Most contemporary OS work focuses on
distributed systems

- Labs will stress distributed programming

What is an operating system?

e Makes hardware useful to the programmer

e Provides abstractions for applications
- Manages and hides details of hardware

- Accesses hardware through low /level interfaces
unavailable to applications

e Provides protection

- Prevents one process/user from clobbering another

What is a distributed operating system?

e The holy grail: Transparency

Have a bunch of machines look just like one machine

As easy to manage as one machine

Save applications & users from worrying about it

Just add more machines to scale to higher workloads

e The reality: Numerous complications

Failures, especially partial & network failures

Concurrency

Long latencies

Security issues

Successful distributed system architectures

e Client/server architecture

- Clients request services from servers with network
messages

- Modular architecture, isolates servers from client faults

- Can potentially scale by adding more servers

e Peer-to-peer (decentralized)
- Ad hoc configuration can survive loss of any machine

- Potential scalability problems (e.g., can’t broadcast)

e Single name or address space

Why Operating Systems?

e Operating systems are a maturing field
- Most people use a handful of mature OSes
- Hard to get people to switch operating systems

- Hard to have impact with a new OS

e High-performancs servers are an OS issue!

Need to manage hardware resources, often at low level

Much server software faces the same issues as OSes

OS abstractions often even interfere with servers

Big open problem: OSes don’t support flexibility needs of
high-performance servers

Example: A video server

e Hardware capabilities
- 20 MByte/sec SCSI disk
- 100 Mbit/sec Ethernet

e Server requirements
- 200 Kbit/sec video streams
- Many users spread around the Internet

- Access control

e Maximum capacity: 500 clients

The reality: Much lower capacity
e CPU bottleneck

- Software structure may impose many context switches

- Concurrency may introduce lock contention

e Disk I/O limitations

- Multiple video streams can introduce disk seeks: 5ms seek per
8K read — 1.6 MByte/sec

- Must pipeline disk requests: prefetching
- Must deal with OS butffer cache (may fill memory and cause
paging)
e Network complications
- OS may butffer stale data (dropped frames)

- Introduces latency to congestion feedback (received packets not
prioritized)

Concurrency

e Goal: Maximize throughput

- Service the maximum number of clients over time

e Benefit: Overlap latencies

- Dedicate CPU time to other clients during network
transmission/client computation

- Present disk with simultaneous requests
— achieve better disk arm scheduling

- Amortize interrupts over multiple packets

e Dangers: Reducing throughput with overload
- Introducing context switches
- Increasing cache misses

- Increased memory/buffer cache usage — Paging / thrashing

e Two basic approaches: Threads & Asynchronous I/O

Threads

o Write sequential-looking code:

for (;;) {
read_from_disk;
write_to_network;

walt_until next frame needed:

+

¢ Run multiple instances of code in parallel
- While one thread paused /waiting for I/O, schedule another
- Protect shared data by locks

e Benefit: threaded code can exploit multiprocessor

Limitations of threads
High memory overhead
- Need one stack per thread

High context switch overhead for kernel threads

- But user threads suck, too (no multiprocessing)

Lock contention can kill performance

Even uncontested synchronization operations expensive

Coarse-grained locking kills concurrency

Fine-graned locking costs CPU time

Preemption may happen at inopportune moments
— priority inversion

Brutally hard to program!

Why thread programming is hard

e Data races
e Deadlock

e Threads break abstraction

- Must worry about what locks modules assume & aquire

Tl =— Module A =— Module B = wait

T2 = Module A = Module B = signal Deadlock!

- Breaks callbacks

Tl =— Module A = Module B =— Module A Deadlock!

e Hard to debug

- Non-determinism based on internal scheduler

Asynchronous I/0

e I/O operations never block

- e.g., if no data, read immediately returns error

e Single blocking operation: select/poll

- Returns list of I/O operations that are ready

e Event driven architecture
- Maintain list of callbacks awaiting I/O events

- Main dispatch loop makes callbacks when event happens

struct callback {
void (*cb) (void *); void *arg;
s
main () {
initialize_callbacks;
foreach (pending I/0) { run_callback; }

+

Benefits of Asynchronous programming

e Low overhead
- Callback typically much smaller than thread stack

- No context switch overhead (just a procedure call)

e Implicit coordination

- No data races
- No deadlock

- No priority inversion

Limitations of Asynchronous programming

¢ Cannot have long-running callbacks
e Not automatically scalable to multiprocessor

e Hard to program

- Must explicitly package up state across callbacks
Cannot share stack-allocated state

- Lots of dynamic memory allocation
(who is resposible for freeing what?)

- Logical flow of events broken into many event handlers

Other issues for high-performance servers:

e Coordination & scheduling

e Disk allocation & scheduling

e Memory management (including buffer cache)
e Address spaces (VM)

e Distributed system abstractions

o Efficient data movement
- Kernel effectively a data mover

- IPC, memory — network, disk — network,
network — network, etc.

Example: Coordination

e Interrupts are expensive (microseconds)
- Under heavy load, can spend all time servicing interrupts

- Receiver livelock occurs when more packets arrive than can
be processed

e Polling
- Amortize one driver invocation over many packets
- Adds latency (unreasonable under low loads)

- Fits naturally into asynchronous I/O model

e Solution: switch dynamically between interrupts
& polling

Scaling to multiple CPUs

e Multiprocessors help if user-level CPU bottleneck
- Might hurt system time, though

- Non-linear cost vs. speedup

e Server clusters

- Inexpensive if scalable

e Distributed server clusters

- When client-server bandwidth is low

Clusters

e Naming transparency

- Should client be aware of cluster?
e Server selection

e Consistency

- Multiple servers must agree on state of things

o Availability
- Chances of one node failing increase

- Replication helps availability, complicates consistency

Distributed clusters

e Many issues:

Replication policies

Efficient data distribution

Consistency

Network monitoring and modeling

- Global load-balancing
e Rethink traditional OS abstractions

- File system semantics, etc.

- Trade-off between accuracy, latency, and network load

Summary

e High performance servers an OS issue
- Pipelining disk & network requests
- Coordination

- Caching

e True scalability requires distributed system
Reliability / Availability

Security

Consistency

Tolerating latency

o Difficult

- If a fast server bypasses OS abstractions, how does this
affect other applications?

System calls

e Problem: How to access resources other than CPU
- Disk, network, terminal, other processes
- CPU prohibits instructions that would access devices

- Only privileged OS “kernel” can access devices
e Applications request I/O operations from kernel

e Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

e Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

I/O through the file system

e Applications “open” files/devices by name

- 1/0 happens through open files

e int open(char *path, int flags, ...);

flags: 0_RDONLY, 0_WRONLY, 0_RDWR

0_CREAT: create the file if non-existent

0_EXCL: (w. 0_CREAT) create if file exists already
0_TRUNC: Truncate the file

0_APPEND: Start writing from end of file

mode: final argument with 0_CREAT

e Returns file descriptor—used for all I/O to file

Error returns

e What if open fails? Returns -1 (invalid fd)

e Most system calls return -1 on failure

- Specitic kind of error in global int errno

e #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

e perror, strerror print human-readable messages
P s
- perror ("initfile");

- printf ("initfile: %s\n", strerror (errno));

— “initfile: No such file or directory”

Operations on file descriptors

int read (int fd, void *buf, int nbytes);
- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

int write (int fd, void *buf, int nbytes);

- Returns number of bytes read, -1 on error

off t lseek (int fd, off_t pos, int whence);

- whence: 0 —start, 1 — current, 2 — end
- Returns previous file offset, or -1 on error

int close (int fd);

int fsync (int £fd);

- Guarantee that file contents is stably on disk

Other system calls on pathnames

int chdir (const char *dir);

- Change working directory (what cd command does)
int mkdir (const char *dir);

int rmdir (const char *dir);

- Make and remove direcories

int unlink (const char *path);

- Delete pathname specified by path

int link (const char *pl, const char *pl);

- Creates p2; p1 & p2 identical directory entries

int symlink (const char *pl, const char *p2);

- Creates p2; p2 is an alias for name p1

The rename system call

e int rename (const char *pl, const char *p2);
- Changes name p2 to reference file p1

- Removes file name p1

e Guarantees that p2 will exist despite any crashes
- p2 may still be old file
- pl and p2 may both be new file

- but p2 will always be old or new file

e fsync/rename idiom used extensively
- E.g., emacs: Writes file .#file#
- Calls fsync on file descriptor

- rename (".#file#", "file");

File descriptor numbers

e File descriptors are inherited by processes

- When one process spawns another, same fds by default

e Descriptors 0, 1, and 2 have special meaning
0 — “standard input” (stdin in ANSI C)
1 — “standard output” (stdout, printf in ANSIC)

2 — “standard error” (stderr, perror in ANSI C)

Normally all three attached to terminal

Manipulating file descriptors

e int dup2 (int oldfd, int newfd);
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(1seek on one will affect both)

e int fcntl (int fd, F_SETFD, int val)
- Sets close on exec flag if val =1, clears if val =0

- Makes file descriptor non-inheritable by spawned programs

Pipes

e int pipe (int fds[2]);

Returns two file descriptors in £ds [0] and fds [1]
Writes to fds[1] will be read on fds [0]
When last copy of £ds[1] closed, £ds [0] will return EOF

Returns 0 on success, -1 on error

e Operations on pipes
- read/write/close — as with files
- When fds[1] closed, read (fds [0]) returns O bytes

- When £ds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked
- Fails with EPIPE

Sockets: Communication between machines

e Datagram sockets: Unreliable message delivery
- On Internet: User Datagram Protocol (UDP)
- Send atomic messages, which may be reordered or lost

- Special system calls to read /write: send/recv

e Stream sockets: Bi-directional pipes
- On Internet: Transmission Control Protocol (TCP)
- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

Socket naming

e Every Internet host has a unique 32-bit IP address
- Often written in “dotted-quad” notation: 204.168.181.201
- DNS protocol maps names (www.nyu.edu) to IP> addresses

- Network routes packets based on IP address

e 16-bit port number demultiplexes TCP traffic

- Well-known services “listen” on standard ports: finger—79,
HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

- A connection consists of five components: Protocol (TCP),
local IP, local port, remote IP, remote port

e All Internet traffic routed as small packets

- Each packet contains address information in header

System calls for using TCP

Client Server

socket — make socket
bind — assign address
listen — listen for clients

socket — make socket

bind — assign address

connect — connect to listening socket

accept — accept connection

Example client

struct sockaddr_in {
short sin_family; /* = AF_INET x*/
u_short sin_port; /* = htons (PORT) */
struct 1n_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS) ;

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)
write (1, buf, n);

Example server

struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);
bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);
sin.sin_addr.s_addr = htonl (INADDR_ANY) ;
bind (s, (sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (5;5) {
socklen_t len = sizeof (sin);
int cfd = accept (s, (sockaddr *) &sin, &len);
/* do something with cfd */
close (cfd);

Concurrent connections

e Servers must handle multiple clients concurrently
- Read or write of a socket connected to slow client can block
- Overlap network latency with CPU, transmission, disk I/O

- Keep disk queues full when server accesses disk

e Can use one process per client: accept, fork, close

- High overhead, cannot share state between clients

e Can use threads for concurrency
- Data races and deadlock make programming tricky

- Must allocate one stack per request

e Use non-blocking read/write calls

- Unusual programming model

Non-blocking I/0

e fcntl sets 0_NONBLOCK flag on descriptor

int n;
if ((n = fcntl (s, F_GETFL)) >= 0)
fcntl (s, F_SETFL, n | O_NONBLOCK) ;

e Non-blocking semantics of system calls:

read immediately returns -1 with errno EAGAIN if no data

write may not write all data, or may return EAGAIN

connect may “fail” with EINPROGRESS (or may succeed, or
may fail with real error like ECONNREFUSED)

accept may fail with EAGAIN if no pending connections

How do you know when to read/write?

struct timeval {
long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

+;

int select (int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO (&fdset) ;

Asynchronous programming model

e Many non-blocking file descriptors in one process
- Wait for pending I/O events on file many descriptors

- Each event triggers some callback function

e Lab: 1ibasync — supports event-driven model
- Register callbacks on file descriptors

- Call amain() — main select loop

- Add/delete callbacks from within callbacks

