The different Unix contexts

e User-level

e Kernel “top halt”

- System call, page fault handler, kernel-only process, etc.
e Software interrupt
e Device interrupt
e Timer interrupt (hardclock)

e Context switch code

Transitions between contexts

e User — top half: syscall, page fault

e User/top half — device/timer interrupt: hardware
e Top half — user/context switch: return

e Top half — context switch: sleep

o Context switch — user/top half

Top/bottom half synchronization

e Top half kernel procedures can mask interrupts

int x = splhigh ();
/* ... %/
splx (x);

e splhigh disables all interrupts, but also splnet,
splbio, splsoftnet, ...

e Masking interrupts in hardware can be expensive

- Optimistic implementation — set mask flag on splhigh,
check interrupted flag on splx

Kernel Synchronization

e Need to relinquish CPU when waiting for events

- Disk read, network packet arrival, pipe write, signal, etc.

e int tsleep(void *ident, int priority, ...);

- Switches to another process

ident is arbitrary pointer—e.g., buffer address

priority is priority at which to run when woken up

PCATCH, if ORed into priority, means wake up on signal
Returns 0 if awakened, or ERESTART /EINTR on signal

e int wakeup(void *ident);
- Awakens all processes sleeping on ident

- Restores SPL a time they went to sleep
(so fine to sleep at splhigh)

Process scheduling

e Goal: High throughput

- Minimize context switches to avoid wasting CPU, TLB
misses, cache misses, even page faults.

e Goal: Low latency
- People typing at editors want fast response

- Network services can be latency-bound, not CPU-bound

e BSD time quantum: 1/10 sec (since ~1980)
- Empirically longest tolerable latency

- Computers now faster, but job queues also shorter

Scheduling algorithms

e Round-robin
e Priority scheduling
e Shortest process next (if you can estimate it)

e Fair-Share Schedule (try to be fair at level of users,
not processes)

Multilevel feeedback queues (BSD)

e Every runnable proc. on one of 32 run queues
- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

e Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

e Idea: Favor interactive jobs that use less CPU

Process priority

e p nice — user-settable weighting factor

e p estcpu — per-process estimated CPU usage
- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

2 - load
2-load +1

p-estcpu «— () p-estcpu + p-nice

¢ Run queue determined by p_usrpri/4

, p-estcpu _
p-usrpri <« 50 + (1) + 2 -pmnice

(value clipped if over 127)

Sleeping process increases priority

e p_estcpu not updated while asleep

- Instead p_slptime keeps count of sleep time

e When process becomes runnable

9. load p-slptime
p_estcpu « 3 Toad = 1 X p_estcpu

- Approximates decay ignoring nice and past loads

Discussion

e 10 people running vi have 1 sec latency?

e How do UNIX signals work?

- What if signal arrives while process in “top half”

e Does UNIX kernel suffer from priority inversion?

Real-time scheduling

e Two categories:
- Soft real time—miss deadline and CD will sound funny

- Hard real time—miss deadline and plane will crash

e System must handle periodic and aperiodic events

- E.g., procs A, B, C must be scheduled every 100, 200,
500 msec, require 50, 30, 100 msec respectively

CPU . : .
< 1 (not counting switch time)

- Schedulable if Z beriod =

e Variety of scheduling strategies
- E.g., first deadline first (works if schedulable)

Multiprocessor scheduling issues

e For TLB and cache, care about which CPU
- Affinity scheduling—try to keep threads on same CPU

e Want related processes scheduled together
- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often
(otherwise would spend all their time waiting)

o Gang scheduling—schedule all CPUs
synchronously

- With synchronized quanta, easier to schedule related
processes/threads together

Lottery scheduling

o Issue lottery tickets to processes
- Let p; have t; tickets, let T = > t;

- Chance of winning next quantum is ¢; /7.

e Control avg. proportion CPU for each process
- Can also group processes hierarchically for control
- Subdivide lottery tickets allocated to a particular process

- Modeled as currencies, funded through other currencies

e Can transfer tickets to other processes
- Perfect for IPC

- Avoids priority inversion with mutexes

Compensation tickets

e What if proc. only uses fraction f of quantum

Say A and B have same number of lottery tickets

Proc. A uses full quantum, proc. B uses f fraction

Each wins the lottery as often

B gets fraction f of B’s CPU time. No fair!

e Solution: Compensation tickets

- If B uses f of quantum, inflate B’s tickets by 1/ f until it
next wins CPU

- E.g., process that uses half of quantup gets schecules twice
as often

