Abstractions

e We said OS provides protection and abstraction

e What kind of abstractions?

- Process—addpress space, thread of control, user ID
- File System

- Pipe/Socket—local IPC, network communication

e How to use interface?

for (;;) {
read_from_network ();
parse_request ();
read_from_disk ();

write_to_network ();

+

Synchronous server

cry I i :
Disk ; - é

Network $ K

e OS handles the disk/network read/write

e Becomes more useful with multiple processes

Concurrent server

cru I i :
Disk ; - é

Z
Network $ K

e Overlapping operations makes for higher resource

utilization

Traditional OS structure

applic. || applic|| applic.
user lib lib lib

kernel | syscall | |pg fault|
ES VM sockets
disk disk NIC

context switch
TCP retransmits, ...
device interrupts
N J

e One large piece of software in supervisor mode
- Offers convenient, portable high-level programming model

- Easy for kernel subsystems to cooperate (FS, disk driver, buffer
cache all just communicate through procedure calls)

Example: OpenBSD/x86 System call

e Application: read (fd, buf, len);
e C Library:

- Ensure fd, buf, len on stack
- Put 0x3 (syscall no. SYS_read) in designated register
- Execute INT instruction (e.g., int $0x80)

e INT instruction
- Sets privileged mode bit
- Sets SP to kernel stack

- Saves a few user registers on stack (e.g., user IP, SP)

Finishing the system call

e Kernel trap handler
- Fix up any remaining state (e.g., segmentation regs)
- Copy arguments in from user stack

- Transfer control to sys_read () (ordinary C function)

e sys mkdir ()
- Calls FS — buffer cache

- Copies data out to application, returns

e Back in trap handler

- iret instruction restores regs, returns to user mode

What if read missed in buffer cache?

e sys_.read ()

- Invokes FS — Disk driver — sleep — switch

e switch
- Saves all state of current process
- Finds a process to run (or jumps to idle loop)

- Switch address spaces, continue process

e Later, disk interrupt signals I/O completion
- Set flag saying want to reschedule mkdir proc. again
- Preempt current proc—make it call switch

- Switches address space, our sleep returns

Drawbacks of traditional kernels

e All privileged, room for many bugs
- Developing new OS abstractions painful (crash—reboot)

- Bad OS code destabilizes whole system
Hard to convince people to run your OS extension

e Limits flexibility

Want multiple threads per process?

Want single thread crossing into a ditferent address space?

Want control disk layout of files for performance?

Don’t like the kernel’s TCP implementation?

Alternative: ykernels

applic. || v\ FS
Server || Server

wser | b |} 4 | g |
kemmel| 1pC || /TPC ' mﬂc

%text switch[

device interrupts
N J

e Move complex abstractions to server processes
- Kernel mostly handles IPC

- Also grants hardware access to privileged servers

CISC vs. RISC

o CISC = complex instruction set computing
- One instruction may do many things (e.g., strcpy)
- One instruction can take many cycles

- Often variable-length instructions, special-purpose registers
e.g., stack push & pop inst specific to sp register
e RISC =reduced instruction set computing

- Fixed-length instructions, many general purpose registers

- Hardwired control, exposed pipeline

RISC philosophy

e Simpler instructions — faster implementation
- w/o stalls, retire one instruction every cycle

- more instructions, but faster so isn’t usually a problem?
e Don’t do in hardware what can be left to software

e Optimize for the common case

- Don’t waste silicon for uncommon operations like system
calls

- Use transistors to make ADD fast instead!

e How to to decide what’'s common?
- Industry standard benchmarks like SPEC

Example: MIPS

¢ 31 general purpose registers (29 usable)
- Fixed-length instructions include 5 bits for each register
- Any instruction can operate on any register

- By convention divide into caller & callee saved registers

e Load/store architecture

- ALU operations only on registers (e.g. R1 < R2 + R3)

e Exposed pipeline — delay slots

- Branch delay slot — instruction after branch always executed
(Delay slot instruction must be idempotent-why?)

- Load delay slot — can’t use register right after loading it

MIPS Traps & Exceptions

e Most traps/system calls vector to the same location

- Software demultiplexes different types of exception

o Software-managed TLB has optimized fault handler
- Hardware vectors directly to fault handler
- Two registers reserved for use by TLB miss handler

- Handler + most of kernel run in unmapped memory,
but page tables mapped, so handler is allowed to fault

e No atomic read-modify-write memory operations

- Requires trap to the kernel

Example: SPARC

e Wanted even more registers
- Since ALU operations only work on registers
- Plus loads/stores are slow

- But can’t fit more bits for register number in instructions

e New mechanism: Register windows
- Divide registers into 7 global, 8 in, 8 out, 8 local
- On procedure call, rotate windows (in « out, new in+local)

- Trap on window overflow /underflow (kernel saves values
to stack)

e Also conditional branch delay slots

- Slot instruction executed only if branch taken

CISC revisited

e Do we care about RISC now?
- Still in use for niche markets (Mac, 64-bit apps., ...)

- But most machines are now x86/Pentium

o Still, Pentium shares many properties with RISC

- Since PentiumPro, internally translates code to RISC-like
instructions

- Deep pipelines (Pentium 1V particularly)

e Legacy instruction sets make some operations even more
expensive than on RISCs
- Traps to kernel (int) many cycles (manipulates the stack)
- Trap handler code expensive (e.g., must load segment registers)

- Context switch requires TLB flush

