
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #8: Textures

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2010

Announcements

� No new homework assignment for this Friday

� Homework assignment #4 due Friday, Oct 29

� To be presented between 2-4pm in lab 260

� Late submissions for project #3 accepted until this Friday

� Midterm exam: Thursday, Oct 21, 2-3:20pm, WLH 2005� Midterm exam: Thursday, Oct 21, 2-3:20pm, WLH 2005

� Midterm tutorial: Tuesday, Oct 19, noon-1:45pm, Atkinson
Hall, room 4004

� Tutors: Jurgen and Phi

� We will have blank index cards for everybody

� Phi’s office hours on Oct 19 and 21 are cancelled

2

Lecture Overview

� Shader programming

� Fragment shaders

� GLSL

� Texturing

� Overview

� Texture coordinate assignment

� Anti-aliasing

3

Fragment Programs

Fragment

Fragment data

Interpolated vertex attributes,

additional fragment attributes

From rasterizer

Uniform parameters Fragment

program

To fixed framebuffer

access functionality

(z-buffering, etc.)

Fragment color,

depth

Uniform parameters

OpenGL state,

application specified

parameters

4

Types of Input Data

Fragment data
� Change for each execution of the fragment program
� Interpolated from vertex data during rasterization,
varying variables

� Interpolated fragment color, texture coordinates
� Standard OpenGL fragment data accessible through

predefined variables
Standard OpenGL fragment data accessible through
predefined variables
varying vec4 gl_Color;
varying vec4 gl_TexCoord[];
etc.

� Note varying storage classifier, read-only
� User defined data possible, too

5

Types of Input Data

Uniform parameters

� Same as in vertex shader

� OpenGL state

� Application defined parameters� Application defined parameters
� Use glGetUniformLocation, glUniform* in

application

6

Output Variables

� Predefined outputs
� gl_FragColor

� gl_FragDepth

� OpenGL writes these to the frame buffer

� Result is undefined if you do not write these variablesResult is undefined if you do not write these variables

7

“Hello World” Fragment Program

� main() function is executed for every fragment

� Use predefined variables

� Draws every pixel in green color

void main() void main()

{

gl_FragColor = vec4(0.0,1.0,0.0,1.0);

}

8

Examples

� Fancy per pixel shading

� Bump mapping

� Displacement mapping

� Realistic reflection models

� Cartoon shading

Shadows� Shadows

� Most often, vertex and fragment shaders work together
to achieve a desired effect

9

Fragment Programs

Limitations

� Cannot read frame buffer (color, depth)

� Can only write to frame buffer pixel that corresponds to
fragment being processed
� No random write access to frame buffer

� Limited number of varying variables passed from � Limited number of varying variables passed from
vertex to fragment shader

� Limited number of application-defined uniform
parameters

10

Lecture Overview

� Shader programming

� Fragment shaders

� GLSL

� Texturing

� Overview

� Texture coordinate assignment

� Anti-aliasing

11

GLSL Main Features

� Similar to C language

� attribute, uniform, varying storage

classifiers

� Set of predefined variables

� Access per vertex, per fragment data� Access per vertex, per fragment data

� Access OpenGL state

� Built-in vector data types, vector operations

� No pointers

� No direct access to data, variables in your C++ code

12

Per-pixel Diffuse Lighting
// Vertex shader, stored in file diffuse.vert

varying vec3 normal, lightDir;

void main()

{

lightDir = normalize(vec3(gl_LightSource[0].position));

normal = normalize(gl_NormalMatrix * gl_Normal);

gl_Position = ftransform();

}

// Pixel shader, stored in file diffuse.frag

varying vec3 normal, lightDir;

void main()

{

gl_FragColor =

gl_LightSource[0].diffuse *

max(dot(normalize(normal), normalize(lightDir)),0.0) *

gl_FrontMaterial.diffuse;

}

13

GLSL Quick Reference Guide

http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf
14

GLSL Quick Reference Guide

http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf
15

Tutorials and Documentation

� OpenGL and GLSL specifications
http://www.opengl.org/documentation/specs/

� GLSL tutorials
http://www.lighthouse3d.com/opengl/glsl/

http://www.clockworkcoders.com/oglsl/tutorials.html

OpenGL Programming Guide (Red Book)� OpenGL Programming Guide (Red Book)

� OpenGL Shading Language (Orange Book)

16

Lecture Overview

� Shader programming

� Fragment shaders

� GLSL

� Texturing

� Overview

� Texture coordinate assignment

� Anti-aliasing

17

Large Triangles

Pros:

� Often sufficient for simple
geometry

� Fast to render

Cons:Cons:

� Per vertex colors look bad

� Need more interesting surfaces
� Detailed color variation, small

scale bumps, roughness

18

Texture Mapping

� Attach textures (images) onto
surfaces

� Same triangle count, much more
realistic appearance

19

Texture Sources

� Take photographs

� Paint directly on surfaces with a
3D modeling program (Maya, 3ds
Max, Blender, etc.)

� Use existing images from disk Images by Paul Debevec� Use existing images from disk Images by Paul Debevec

Texture painting in Maya

Texture Mapping

� Goal: assign locations in texture to
locations on 3D geometry

� Introduce texture space

� Texture pixels (texels) have texture
coordinates (u,v)

Convention

(1,1)

u

� Convention

� Bottom left corner of texture is at
(u,v) = (0,0)

� Top right corner is at (u,v) = (1,1)
(0,0)

v

Texture space

21

Texture Mapping

� Store texture coordinates at each triangle vertex

(1,1)

v1

(u,v) = (0.65,0.75)

v

(0.4,0.45)

(0.6,0.4)

(0,0)
s

t

Texture space

(0.65,0.75)

Triangle (in any space before projection)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

22

Texture Mapping

� Each point on triangle has barycentric coordinates α, β, γ

� Use barycentric coordinates to interpolate texture
coordinates

(1,1)
v1

(u,v) = (0.65,0.75)

(0.4,0.45)

(0.6,0.4)

(0,0)
s

t

(0.65,0.75)

(u,v) = (0.65,0.75)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

Texture space
Triangle (in any space before projection)

23

Texture Mapping

� Each point on triangle has corresponding point in texture

(1,1)v1

(u,v) = (0.65,0.75)

(0.4,0.45)

(0.6,0.4)

(0,0)
s

t

(0.65,0.75)

(u,v) = (0.65,0.75)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

Texture space
Triangle (in any space before projection)

24

Rendering

� Given

� Texture coordinates at each vertex

� Texture image

� At each pixel, use barycentric coordinates to interpolate
texture coordinatestexture coordinates

� Look up corresponding texel

� Paint current pixel with texel color

� All computations are done on the GPU

25

Texture Mapping

Modeling and viewing

transformation

Shading

Projection

Primitives

Includes texture mapping

Frame-buffer access

(z-buffering)

Projection

Rasterization

Image

Fragment processing

26

Rendering

� Linear interpolation in image space does not
correspond to linear interpolation in 3D

� Need to do perspectively correct interpolation!

Perspectively correct

interpolation

Linear interpolation

in image coordinates

27

� Point in image space with barycentric coordinates α, β, γ

� Triangle vertices with homogeneous coordinates

1.

2.

Perspectively Correct Interpolation

3.

� Same for v texture coordinate

28

Texture Look-Up

� Given interpolated texture coordinates (u, v) at current
pixel

� Closest four texels in texture space are at

� How to compute pixel color?� How to compute pixel color?

29

Nearest-Neighbor Interpolation

� Use color of closest texel

� Simple, but low quality and aliasing

30

Bilinear Interpolation

1. Linear interpolation horizontally

31

1. Linear interpolation horizontally

Bilinear Interpolation

2. Linear interpolation vertically

32

Basic Shaders for Texturing
// Need to initialize texture using OpenGL API calls.

// See base code.

// Vertex shader

void main()

{

gl_Position = ftransform();

}

// Fragment shader

uniform sampler2D tex;

void main()

{

gl_FragColor = texture2D(tex, gl_TexCoord[0].st);

}

33

Tiling

� Image exists from [0,0]x[1,1] in texture space

� (u,v) texture coordinates may go outside that range

� Tiling and wrapping rules for out-of-range coordinates

34

(1,1)

Tiling

� Repeat the texture

� Seams, unless the texture lines up on the edges

v

u

Texture Space

(0,0)

(1,1)

35

(1,1)

Clamping

� Use the edge value everywhere outside the data

� Or, ignore the texture outside 0-1

s

t

Texture Space

(0,0)

(1,1)

36

(1,1)

Mirroring

� Flip left-to-right and top-to-bottom

� All the edges line up

s

t

Texture Space

(0,0)

(1,1)

37

Lecture Overview

� Shader programming

� Fragment shaders

� GLSL

� Texturing

� Overview

� Texture coordinate assignment

� Anti-aliasing

38

Texture Coordinate Assignment

Surface parameterization

� Mapping between 3D positions on surface and 2D
texture coordinates

� In practice, defined by texture coordinates of triangle vertices

� Various options to establish a parameterization� Various options to establish a parameterization

� Parametric mapping

� Orthographic mapping

� Projective mapping

� Spherical mapping

� Cylindrical mapping

� Skin mapping

39

Parametric Mapping

� Surface given by parametric functions

� Very common in CAD

� Use (u,v) parameters as texture coordinates

40

Orthographic Mapping

� Use linear transformation of object’s xyz coordinates

� For example

41

Projective Mapping

� Use perspective projection of xyz coordinates

� OpenGL provides GL_TEXTURE matrix to apply
perspective projection on texture coordinates

� Useful to achieve “fake” lighting effects

42

Spherical Mapping

� Use, e.g., spherical coordinates for sphere

� Place object in sphere

� “shrink-wrap” sphere to object

43

Cylindrical Mapping

� Similar as spherical mapping, but with cylilnder

� Useful for faces

44

Skin Mapping

� Complex technique to unfold surface onto plane

� Preserve area and angle

� Sophisticated mathematics

45

Lecture Overview

� Shader programming

� Fragment shaders

� GLSL

� Texturing

� Overview

� Texture coordinate assignment

� Anti-aliasing

46

Example for Aliasing

� What causes this?

47

Aliasing

Sufficiently

sampled,

no aliasing

Insufficiently

sampled,

aliasing

High frequencies in the input data appear as

low frequencies in the sampled signal

48

Antialiasing: Intuition

� Pixel may cover large area on triangle in camera space

Texture spaceCamera spaceImage plane

Texels

Pixel area

49

Antialiasing: Intuition

� Pixel may cover large area on triangle in camera space
� Corresponds to many texels in texture space
� Need to compute average

Texture spaceCamera spaceImage plane

Texels

Pixel area

Texels

50

Antialiasing: Mathematics

� Pixels are samples, not little squares
http://www.alvyray.com/memos/6_pixel.pdf

� Use frequency analysis to explain sampling artifacts
� Fourier transforms

� Antialiasing is achieved through low-pass filtering

� For more information:� For more information:
� http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

� Glassner: Principles of digital image synthesis

51

Antialiasing Using Mip-Maps

� Averaging over texels is expensive

� Many texels as objects get smaller

� Large memory access and compuation cost

� Precompute filtered (averaged) textures

� Mip-maps

� Practical solution to aliasing problem

� Fast and simple

� Available in OpenGL, implemented in GPUs

� Reasonable quality

52

Mipmaps

� MIP stands for multum in parvo = “much in little”
(Williams 1983)

Before rendering

� Pre-compute and store down scaled versions of
texturestextures

� Reduce resolution by factors of two successively

� Use high quality filtering (averaging) scheme

� Increases memory cost by 1/3

� 1/3 = ¼+1/16+1/64+…

� Width and height of texture need to be powers of
two

53

Mipmaps

� Example: resolutions 512x512, 256x256, 128x128, 64x64,
32x32 pixels

“multum in parvo”
Level 0

Level 1

2

3
4

54

Mipmaps

� One texel in level 4 is the average of 44=256 texels in
level 0

“multum in parvo”
Level 0

Level 1

2

3
4

55

Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 456

Rendering With Mipmaps

� “Mipmapping”

� Interpolate texture coordinates of each pixel as without
mipmapping

� Compute approximate size of pixel in texture space

� Look up color in nearest mipmap
� E.g., if pixel corresponds to 10x10 texels use mipmap level 3� E.g., if pixel corresponds to 10x10 texels use mipmap level 3

� Use nearest neighbor or bilinear interpolation as before

57

Mipmapping

Texture spaceCamera spaceImage plane

Texels

Pixel area

Mip-map level 0

Mip-map level 1

Mip-map level 2

Mip-map level 358

Nearest Mipmap, Nearest Neighbor

� Visible transition between mipmap levels

59

Nearest Mipmap, Bilinear

� Visible transition between mipmap levels

60

Trilinear Mipmapping

� Use two nearest mipmap levels

� E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3
(8x8) and 4 (16x16)

� Perform bilinear interpolation in both mip-maps

� Linearly interpolate between the results

� Requires access to 8 texels for each pixel

� Standard method, supported by hardware with no
performance penalty

61

Nearest Mipmap, Bilinear

� Visible transition between mipmap levels

62

Trilinear Mipmapping

� Smooth transition between mipmap levels

63

Next Lecture

� Thursday:

� Midterm Exam

� Next Tuesday:

� Advanced Texture Mapping Techniques

64

