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Announcements

� Homework assignment #4 due Friday, Oct 29

� Problem #2 not due until Friday, Nov 5

� Two options for problem #4 (extra credit)
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Lecture Overview

� Scene Graphs & Hierarchies

� Performance Optimization

� Curves

� Introduction

� Polynomial curves
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Performance Optimization

� Level-of-detail techniques

� Use lower quality for distant (small) objects

� Culling

� Quickly discard invisible parts of the scene

� Scene graph compilationScene graph compilation

� Efficient use of low-level API

� Avoid state changes in rendering pipeline

� Render objects with similar properties (geometry, shaders, 
materials) in batches
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Level-of-Detail Techniques

� Don’t draw objects smaller than a threshold

� Popping artifacts

� Replace objects by impostors

� Textured planes representing the objects

Dynamic impostor

generation

Original vs. impostor
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Level-of-Detail Techniques

� Adapt triangle count to projected size

With bump mapping

Without bump mapping
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Culling

� Occlusion culling

� Discard objects that are within view frustum, but hidden 
behind other objects

� View frustum culling

� Discard objects outside view frustum

Essential for interactive performance with large scenes� Essential for interactive performance with large scenes
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Occlusion Culling

� Cell-based occlusion culling
� Divide scene into cells

� Determine potentially visible set (PVS) for each cell

� Discard all cells not in PVS

� Two main variants
� Precomputation using binary space partitioning (BSP) trees� Precomputation using binary space partitioning (BSP) trees

� Portal algorithms

� Specialized algorithms for different types of geometry
� Indoor scenes

� Terrain
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View Frustum Culling

� Frustum defined by 6 planes

� Each plane divides space into 
“outside”, “inside”

� Check each object against 
each plane

� Outside, inside, intersecting� Outside, inside, intersecting

� If “outside” all planes

� Outside the frustum

� If “inside” all planes

� Inside the frustum

� Else partly inside and partly out

� Efficiency
View frustum
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Bounding Volumes

� Simple shape that 
completely
encloses an object

� Generally a box or 
sphere

� We use spheres� We use spheres
� Easiest to work with

� Though hard to get
tight fits

� Intersect bounding
volume with view frustum, 
instead of full geometry
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Distance to Plane

� A plane is described by a point p on the plane and a unit 
normal n

� Find the (perpendicular) distance from point x to the 
plane

•p

• x

 
r
n
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• x

Distance to Plane

� The distance is the length of the projection of x-p
onto n

dist = x − p( )
u ruuuuuu
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� The distance has a sign

� positive on the side of the plane the normal points to

� negative on the opposite side

� zero exactly on the plane

� Divides 3D space into two infinite half-spaces

Distance to Plane

� Divides 3D space into two infinite half-spaces

•p

 
dist(x) = x − p( )

u ruuuuuu
⋅
r
n  

r
n

Positive

Negative
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Distance to Plane

� Simplification

d is independent of x� d is independent of x

� d is distance from the origin to the plane

� We can represent a plane with just d and n
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Frustum With Signed Planes

� Normal of each plane points outside

� “outside” means positive distance

� “inside” means negative distance
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� For sphere with radius r and origin x, test the distance to 
the origin, and see if it is beyond the radius

� Three cases:

� dist(x)>r

� completely above

dist(x)<-r

Test Sphere and Plane

 
r
n

Positive
� dist(x)<-r

� completely below

� -r<dist(x)<r

� intersects

•

Positive

Negative
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Culling Summary

� Precompute the normal n and value d for each of the 
six planes.

� Given a sphere with center x and radius r

� For each plane:
� if dist(x) > r: sphere is outside!  (no need to continue loop)

add 1 to count if dist(x)<-r� add 1 to count if dist(x)<-r

� If we made it through the loop, check the count:
� if the count is 6, the sphere is completely inside

� otherwise the sphere intersects the frustum

� (can use a flag instead of a count)
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� Want to be able to cull the whole group quickly

� But if the group is partly in and partly out, want to be 
able to cull individual objects

Culling Groups of Objects
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Hierarchical Bounding Volumes

� Given hierarchy of objects

� Bounding volume of each node encloses the bounding 
volumes of all its children

� Start by testing the outermost bounding volume

� If it is entirely outside, don’t draw the group at all� If it is entirely outside, don’t draw the group at all

� If it is entirely inside, draw the whole group
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� If the bounding volume is partly inside and partly 
outside

� Test each child’s bounding volume individually

� If the child is in, draw it; if it’s out cull it; if it’s partly in and 
partly out, recurse.

If recursion reaches a leaf node, draw it normally

Hierarchical Culling

� If recursion reaches a leaf node, draw it normally
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Lecture Overview

� Scene Graphs & Hierarchies

� Performance Optimization

� Curves

� Introduction

� Polynomial curves
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Modeling

� Creating 3D objects

� How to construct complex surfaces?

� Goal

� Specify objects with control points

� Objects should be visually pleasing (smooth)

Start with curves, then generalize to surfaces� Start with curves, then generalize to surfaces

� Next:  What can curves be used for?
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Curves

� Surface of revolution (homework project!)
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Curves

� Extruded/swept surfaces
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Curves

� Animation

� Provide a “track” for objects

� Use as camera path
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Curves

� Specify parameter values over time
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Curves

� Can be generalized to surface patches
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Curve Representation

� Specify every point along a curve?  
� Hard to get precise, smooth results

� Too much data, difficult to work with

� Specify a curve using a small number of “control points”
� Known as a spline curve or just spline

Control 

point
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Spline: Definition

� Wikipedia:

� Term comes from flexible spline 
devices used by shipbuilders and 
draftsmen to draw smooth shapes

� Spline consists of a long strip fixed 
in position at a number of points in position at a number of points 
that relaxes to form a smooth curve 
passing through those points
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Interpolating Splines

� Curve goes through all control points

� Seems most intuitive

� Surprisingly, not usually the best choice

� Hard to predict behavior 

� Overshoots, wiggles� Overshoots, wiggles

� Hard to get “nice-looking” curves
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Approximating Splines

� Curve is “influenced” by control points

� Various types & techniques

� Most common: polynomial functions

� Bézier spline

� B-spline (generalization of Bézier spline)

� NURBS (Non Uniform Rational Basis Spline)

� In this lecture: focus on Bézier splines
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� A vector valued function of one variable x(t)

� Given t, compute a 3D point x=(x,y,z)

� May interpret as three functions x(t), y(t), z(t)

� “Moving a point along the curve”

Mathematical Definition

x(t)

x

y

z

x(0.0) x(0.5) x(1.0)
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Tangent Vector

� Derivative

� A vector that points in the direction of movement

� Length corresponds to speed

x(t)

x’(0.0) x’(0.5) x’(1.0)

x

y

z
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Lecture Overview

� Scene Graphs & Hierarchies

� Performance Optimization

� Curves

� Introduction

� Polynomial curves
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Polynomial Functions

� Linear:
(1st order)

� Quadratic:� Quadratic:
(2nd order)

� Cubic:
(3rd order)
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Polynomial Curves

� Linear

� Evaluated as:
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Polynomial Curves

� Quadratic:
(2nd order)

� Cubic:
(3rd order)

� We usually define the curve for 0 ≤ t ≤ 1

37



Control Points

� Polynomial coefficients a, b, c, d can be interpreted as 
control points

� Remember: a, b, c, d have x,y,z components each

� Unfortunately, they don’t intuitively describe the shape of 
the curve

� Main objective of curve representation is to come up with 
intuitive control points
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Control Points

� How many control points?

� Two points define a line (1st order)

� Three points define a quadratic curve (2nd order)

� Four points define a cubic curve (3rd order)

� k+1 points define a k-order curve

Let’s start with a line…� Let’s start with a line…
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First Order Curve

� Based on linear interpolation (LERP)

� Weighted average between two values

� “Value” could be a number, vector, color, …

� Interpolate between points p0 and p1 with parameter t

� Defines a “curve” that is straight (first-order spline)

� t=0 corresponds to p� t=0 corresponds to p0

� t=1 corresponds to p1

� t=0.5 corresponds to midpoint

p0

p1

t=1

.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1( )= 1− t( )p0 + t  p1
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Linear Interpolation

� Three different ways to write it

� All equivalent

� Different properties become apparent

1. Weighted sum of the control points

2. Polynomial in t

3. Matrix form
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Weighted Average

� Weights are a function of t

� Sum is always 1, for any value of t

� Also known as blending functions

x(t) = (1 − t)p0 +    (t)p1

= B0 (t) p0 + B1(t)p1, where B0 (t) = 1 − t  and B1(t) = t

� Also known as blending functions
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� Curve is based at point p0

� Add the vector, scaled by t

 

x(t) = (p1 − p0 )

vector
124 34

 t +    p0    

point
123

Linear Polynomial

� Add the vector, scaled by t

.
p0.

p1-p0

.5(p1-p0)

.
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� Geometry matrix

� Geometric basis

Matrix Form

� Geometric basis

� Polynomial basis

� In components
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Tangent

� For a straight line, the tangent is constant

� Weighted average

� Polynomial

� Matrix form
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Lissajous Curves

� Live demo: http://ibiblio.org/e-notes/Lis/Lissa.htm
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Next Lecture

� Bezier curves

� Curves with multiple segments

� Extension to surfaces
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