
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #7: Shaders

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2010

Announcements

� Homework project #3 due this Friday, October 15

� To be presented between 2-4pm in lab 260

� NEW RULE: Grading ends once list on whiteboard is empty!

� Late submissions for project #2 accepted until this Friday

� Midterm exam: Thursday, Oct 21, 2-3:20pm, WLH 2005Midterm exam: Thursday, Oct 21, 2-3:20pm, WLH 2005

� Midterm tutorial: Tuesday, Oct 19, noon-1:45pm, Atkinson
Hall, room 4004

� Tutors: Jurgen and Phi

� We will have blank index cards for everybody

� Phi’s office hours on Oct 19 and 21 are cancelled

2

Lecture Overview

� Light Sources

� Shader programming:

� Vertex shader

3

Light Sources

� Light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Variation in color

� Reflective surfaces act as light sources (indirect light)

� Interactive rendering is based on simple, standard
light sources

4

Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the cl values)

� Standard light sources in OpenGL

� Directional: from a specific direction

� Point light source: from a specific point

� Spotlight: from a specific point with intensity that depends on
the direction

5

Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface

6

Point Lights

� Simple model for light bulbs

� Point that radiates light in all directions equally

� Light vector varies across the surface

� Intensity drops off proportionally to the inverse square of the
distance from the light

� Reason for inverse square falloff:

� Surface area A of sphere:

A = 4 π r2

7

Point Lights

cl

v

p
csrc

cl

v

Light source

vv

Receiving surface

8

Attenuation

� Sometimes, it is desirable to modify the inverse square
falloff behavior of point lights

� Common (OpenGL) model for distance attenuation

cl =
csrc

kc + kl p − v + kq p − v
2

� Not physically accurate

kc + kl p − v + kq p − v

9

� Like point source, but intensity depends on direction

Parameters

� Position, the location of the source

� Spot direction, the center axis of the light

� Falloff parameters

Spotlights

� Falloff parameters

� Beam width (cone angle)

� The way the light tapers off at edges of the beam (cosine
exponent)

10

Spotlights

Light source

Receiving surface

11

Spotlights

Photograph of spotlight Spotlights in OpenGL

12

Per-Triangle, -Vertex, -Pixel Shading

� Shading operations

� Once per triangle

� Once per vertex

� Once per pixel

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image
13

Per-Triangle Shading

� Known as flat shading

� Evaluate shading once
per triangle

� Advantages

� FastFast

� Disadvantages

� Faceted appearance

14

Per-Vertex Shading

� Known as Gouraud shading (Henri Gouraud 1971)

� Interpolate vertex colors
across triangles

� OpenGL default

� Advantages
� Fast� Fast

� Smoother than flat shading

� Disadvantages
� Problems with small highlights

15

Per-Pixel Shading

� Also known as Phong interpolation (not to be confused
with Phong illumination model)

� Rasterizer interpolates normals across triangles

� Illumination model evaluated at each pixel

� Implemented using fragment shaders (later today)

� Advantages

� Higher quality than Gouraud shading

� Disadvantages

� Much slower

16

Gouraud vs. Per-Pixel Shading

� Gouraud has problems with highlights

� More triangles would improve result, but impact frame
rate

Gouraud Per-pixel

17

Shading in OpenGL
// Somewhere in the initialization part of your

// program…

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

// Make sure vertex colors are used as material properties

glEnable(GL_COLOR_MATERIAL);

glColorMaterial(GL_FRONT, GL_DIFFUSE);

glColorMaterial(GL_FRONT, GL_SPECULAR);

// Create light components

Glfloat ambientLight[] = { 0.2f, 0.2f, 0.2f, 1.0f };

Glgloat diffuseLight[] = { 0.8f, 0.8f, 0.8, 1.0f };

Glfloat specularLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };

Glfloat position[] = { -1.5f, 1.0f, -4.0f, 1.0f };

// Assign created components to GL_LIGHT0

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight);

glLightfv(GL_LIGHT0, GL_POSITION, position);

18

Shading in OpenGL

� Shading computations (diffuse, specular,

ambient) are performed automatically

(unless you use shader programs)

19

Shading in OpenGL

� Need to provide per vertex normals
� Shading is performed in camera space

� Position, direction of light sources is transformed by
GL_MODELVIEW matrix

� If light sources should be fixed relative to objects
� Set GL_MODELVIEW to desired object-to-camera
transform
Set GL_MODELVIEW to desired object-to-camera
transform

� Choose object space coordinates for light position
� Will be transformed using current GL_MODELVIEW

� Lots of details, highly recommend OpenGL
programming guide
� http://glprogramming.com/red/chapter05.html

� http://www.falloutsoftware.com/tutorials/gl/gl8.htm

20

Transforming Normals

� If the object-to-camera transformation M includes shearing or
scaling, transforming normals using M does not work:

� Transformed normals are not perpendicular to surfaces any more

� To avoid the problem, we need to transform the normals
differently:

� by transforming the end points of the normal vectors separately� by transforming the end points of the normal vectors separately

� or using

� Find derivation on-line at:

� http://www.oocities.com/vmelkon/transformingnormals.html

� OpenGL does this automatically for us on the GPU

21

Lecture Overview

� Light Sources

� Shader programming:

� Vertex shader

22

Configurable Pipeline

Before 2002:

� APIs (OpenGL, Direct3D)
to configure the rendering
pipeline

� Enable/disable functionality

Modeling and viewing

transformation

Shading

Scene data

� Enable/disable functionality

� E.g., lighting, texturing

� Set parameters for given
functionality

� E.g., light direction, texture
blending mode

Shading

Projection

Rasterization,

visibility

Image
23

Configurable Pipeline

Disadvantages

� Restricted to preset functionality

� Limited types of light sources (directional, point, spot)

� Limited set of reflection models (ambient, diffuse, Phong)

� Limited use of texture maps

� More flexibility desired for more photorealistic effects

24

Demo

� NVIDIA Time Machine

� http://www.nzone.com/object/nzone_timemachinedemo_home.html

25

Programmable Pipeline

� Replace functionality in parts of the pipeline by user
specified programs

� Called shaders, or shader programs

� Not all functionality in the pipeline is programmable

26

Shader Programs

� Written in a shading language

� Cg: early shading language by NVidia

� Shading languages today:

� GLSL for OpenGL (GL shading language)

� HLSL for DirectX (high level shading language)

� Syntax similar to C� Syntax similar to C

� Novel, quickly changing technology

� Driven by more and more flexible GPUs

27

Programmable Pipeline

Modeling and viewing

transformation

Shading

Projection

Scene

Vertex program

Executed once for each

vertex

Frame-buffer access

(z-buffering)

Projection

Rasterization

Image

Fragment program

Executed once for each

fragment (= pixel

location in a triangle)

Fragment processing

28

GPU Architecture

Pipeline GPU Architecture

128 stream processors
http://arstechnica.com/news.ars/post/20061108-8182.html

NVidia NV80 (GeForce 8800 Series)

29

Programmable Pipeline

Not programmable:

� Projective division

� Rasterization
� Determination of which pixels lie inside a triangle

� Vertex attribute interpolation (color, texture coordinates)

� Access to frame buffer� Access to frame buffer
� Texture filtering

� Z-buffering

� Frame buffer blending

30

Shader Programming

� Application programmer can provide:

� No shaders, standard OpenGL functions are executed

� Vertex shader only

� Fragment shader only

� Vertex and fragment shaders

� Each shader is a separate piece of code in a separate
text file

� Output of vertex shader is interpolated at each
fragment and accessible as input to fragment shader

31

Vertex Programs

� Executed once for every vertex

� Replaces functionality for

� Model-view, projection transformation

� Per-vertex shading

� If you use a vertex program, you need to � If you use a vertex program, you need to
implement this functionality in the
program

� Vertex shader often used for animation

� Characters

� Particle systems

32

Fragment Programs

� Executed once for every fragment

� Implements functionality for

� Texturing

� Per pixel effects

� Per pixel shading� Per pixel shading

� Bump mapping

� Shadows

� Blending

� Look-up tables

� Etc.

33

Creating Shaders in OpenGL

Source: OpenGL Programming Guide34

Lecture Overview

� Light Sources

� Shader programming:

� Vertex shader

35

Vertex Programs

Vertex

Vertex attributes

Coordinates in object space,

additional vertex attributes

From application

Uniform parameters Vertex

program

To rasterizer

Transformed vertices,

processed vertex attributes

Uniform parameters

OpenGL state,

application specified

parameters

36

Types of Input Data

� Vertex attributes

� Change for each execution of the vertex program

� Predefined OpenGL attributes (color, position, etc.)

� User defined attributes

� Uniform parameters

� Normally the same for all vertices

� OpenGL state variables

� Application defined parameters

37

Vertex Attributes

� “Data that flows down the pipeline with each vertex”

� Per-vertex data that your application specifies

� E.g., vertex position, color, normal, texture coordinates

� Declared using attribute storage classifier in your

shader codeshader code

� Read-only

38

Vertex Attributes

� OpenGL vertex attributes accessible through predefined
variables

attribute vec4 gl_Vertex;

attribute vec3 gl_Normal;

attribute vec4 gl_Color;

etc.etc.

� Optional user defined attributes

39

OpenGL State Variables

� Provide access to state of rendering pipeline, which
you set through OpenGL calls in application

� Predefined variables
uniform mat4 gl_ModelViewMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl_ProjectionMatrix;uniform mat4 gl_ProjectionMatrix;

uniform gl_LightSourceParameters

gl_LightSource[gl_MaxLights];

etc.

� Declared using uniform storage classifier
� Read-only

40

Uniform Parameters

� Parameters that are set by the application

� Should not change frequently

� Not on a per-vertex basis!

� Will be the same for each vertex until application changes
it againit again

� Declared using uniform storage classifier

� Read-only

41

Uniform Parameters

� To access, use glGetUniformLocation, glUniform*

in application

� Example

� In shader declare
uniform float a;

� In application, set a using� In application, set a using
GLuint p;

//… initialize program p

int i=glGetUniformLocation(p,”a”);

glUniform1f(i, 1.f);

42

Output Variables

� Required output: homogeneous vertex coordinates
vec4 gl_Position

� varying outputs
� Mechanism to send data to the fragment shader
� Will be interpolated during rasterization
� Interpolated values accessible in fragment shader (using
same variable name)
Interpolated values accessible in fragment shader (using
same variable name)

� Predefined varying outputs
varying vec4 gl_FrontColor;
varying vec4 gl_TexCoord[];
etc.

� User defined varying outputs

43

Output Variables

Note

� Any predefined output variable that you do not write will
assume the value of the current OpenGL state

� E.g., your vertex shader does not write
varying vec4 gl_TexCoord[]

� Your fragment shader may still read it

� The value will be the current OpenGL state

44

“Hello world” Vertex Program

� main() function is executed for every vertex

� Use predefined variables

void main()

{

gl_Position = // required output

gl_ProjectionMatrix * // predefined uniform

� Alternatively, use gl_ModelViewProjectionMatrix or
ftransform()

gl_ProjectionMatrix * // predefined uniform

gl_ModelViewMatrix * // predefined uniform

gl_Vertex; // predefined attribute

}

45

Vertex Programs

Limitations

� Cannot write data to memory accessible by application

� Workaround: CUDA

� Cannot pass data between vertices

� Each vertex is independentEach vertex is independent

� Except for latest graphics cards:
For each incoming vertex there is one outgoing vertex

� Cannot generate new geometry

� Newest cards have Geometry Shader

46

Examples

� Character skinning
� Particle systems
� Water

Character skinning

Particle system
47

Next Lecture

� Fragment Shaders

� Texturing

48

