
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #9: Advanced Textures

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2010

Announcements

� Homework assignment #4 due Friday, Oct 29

� Office hours this week as usual

2

Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures

3

Mipmapping Limitations

� Mipmap texels always represent square areas

� Pixel area is not always square in texture space

� Mipmapping tries to balance between aliasing effects
and a fuzzy image

A circular area in the image plane

can be generated by an ellipse in object space
4

Anisotropic Texture Filtering

� Average texture over elliptical area

� Higher quality than trilinear mip-mapping

� More expensive

� Anisotropic filtering in hardware

� Take several bilinear probes approximating the ellipse

� Reduces rendering performance on current GPUs� Reduces rendering performance on current GPUs

� Pre-calculates non-square mipmap textures: e.g., in addition to a 256x256
pixel mipmap it will store mipmaps of 256x128 pixels, 64x256 pixels, etc.

Texture space

Ellipse of back-

projected pixel

Bilinear

probe

5

Example #1
Source: http://www.garry.tv

6

Example #2

Source: http://www.tomshardware.com/reviews/ati,819-5.html

7

Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures

8

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image
9

System Architecture

Interactive Applications

� Games, virtual reality, visualization

Rendering Engine, Scene Graph API

� Implement functionality commonly required in applications� Implement functionality commonly required in applications

� Back-ends for different low-level APIs

Low-level graphics API

� Interface to graphics hardware

10

System Architecture

Interactive Applications

� Thousands

Rendering Engine, Scene Graph API

� No broadly accepted standards� No broadly accepted standards

� OpenSceneGraph, OpenSG, NVSG, Java3D, Ogre

Low-level graphics API

� Highly standardized: OpenGL, Direct3D

11

Scene Graph APIs

� APIs focus on different clients/applications

� Java3D (https://java3d.dev.java.net/)

� Simple, easy to use, web-based applications

� OpenSceneGraph (www.openscenegraph.org)
� Scientific visualization, virtual reality, GIS (geographic information
systems)systems)

� NVSG (http://developer.nvidia.com/object/scenix-home.html)
� Optimized for Nvidia graphics cards

� Up-to-date shader support (Cg 2.2)

� Ogre3D (http://www.ogre3d.org/)
� Games, high-performance rendering

12

Common Functionality

� Resource management

� Content I/O (geometry, textures, materials, animation sequences)

� Memory management

� High-level scene representation

� Scene graph

� Rendering

� Efficiency

13

Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures

14

Scene Graphs

� Data structure for intuitive construction of 3D scenes

� So far, our GLUT-based projects store a linear list of
objects

� This approach does not scale to large numbers of objects
in complex, dynamic scenes

15

Sample Scene

16

Top View

17

Top View With Coordinate Systems

18

Hierarchical Organization

19

Data Structure

� Requirements

� Collection of individual models/objects

� Organized in groups

� Related via hierarchical transformations

� Use a tree structure� Use a tree structure

� Nodes have associated local coordinates

� Different types of nodes

� Geometry

� Transformations

� Lights

� etc.

20

Class Hierarchy

� Many designs possible

� Concepts are the same, details differ

� Design driven by intended application
� Games

� optimized for speed

� Large-scale visualization� Large-scale visualization
� Optimized for memory requirements

� Modeling system
� Optimized for editing flexibility

21

Class Hierarchy

Node

� Inspired by Java3D

Group Leaf

TransformGroup Light Shape3D

22

Class Hierarchy

Node

� Access to local-to-world coordinate transform

Group

� List of children

� Get, add, remove child� Get, add, remove child

Leaf

� Node with no children

23

Class Hierarchy

TransformGroup

� Stores additional transformation M

� Transformation applies to subtree below node

� Monitor-to-world transform

World

M0

M1

M2

Table

Plant

Monitor Keyboard24

Class Hierarchy

Subclasses of Leaf

Light

� Stores light sources

Shape3D

� References a geometric object, material� References a geometric object, material

25

Scene Graph for Sample Scene
TransformGroup

Shape3D

26

Source Code for Sample Scene
WORLD = new Group();

table1Trafo = new TransformGroup(…);

WORLD.addChild(table1Trafo);

table1 = makeTable(); table1Trafo.addChild(table1);

top1Trafo = new TransformGroup(…);

table1Trafo.addChild(top1Trafo);

lampTrafo = new TransformGroup(…); top1Trafo.addChild(lampTrafo);

lamp = makeLamp(); lampTrafo.addChild(lamp);lamp = makeLamp(); lampTrafo.addChild(lamp);

book1Trafo = new TransformGroup(…);

top1Trafo.addChild(book1Trafo);

book1 = makeBook(); book1Trafo.addChild(book1);

� More convenient to construct hierarchical scenes
than using linear list of objects

� Easier to manipulate

27

Modifying the Scene

� Change tree structure

� Add, delete, rearrange nodes

� Change node parameters

� Transformation matrices

� Shape of geometry data

� Materials

� Define specific subclasses

� Animation, triggered by timer events

28

Modifying the Scene

� Change a transform in the tree

table1Trafo.setRotationZ(23);

� Table rotates, everything on the table moves with it

� Allows easy animation

� Build scene once at start of program� Build scene once at start of program

� Update parameters to draw each frame

� Allows interactive model manipulation tools

� Add objects relative to parent objects

� E.g., book on table

29

Articulated Character

� Separate rigid parts

� Joint angles define transformation matrices

� Hierarchy

� Rooted at torso

� Neck, head subtree Torso� Neck, head subtree

� Arms subtree

� Legs subtree

Torso

Arm/leg

(4x)

Head

30

Parameteric Models

� Parameters for
� Relationship between parts (e.g., joint angles)

� Shape of individual parts (e.g., length of limbs)

� Hierarchical relationship between parts

� Degrees of freedom (DOFs)
� Total number of float parameters in the model� Total number of float parameters in the model

31

More Node Types

� Shape nodes
� Cube, sphere, curved surface, etc…

� Nodes that control structure
� Switch/Select: parameters choose whether or which
children to enable, etc…

� Nodes that define other properties� Nodes that define other properties
� Camera

� Other, application domain dependent nodes:
� Video node

� Terrain node

� Dynamic object node with trajectory, etc.

32

Java3D Scene Graph

33

Graph Definitions

� Wikipedia:

� “A graph is an abstract representation of a set of objects
where some pairs of the objects are connected by links.”

� “A tree is a graph in which any two vertices are connected by
exactly one simple path.”

directed graph � “A directed graph differs from an undirected graph, in that
the latter is defined in terms of unordered pairs of vertices
(edges).”

� “A directed acyclic graph (commonly abbreviated to DAG),
is a directed graph with no directed cycles”

34

Scene Graph, Not Tree

� A scene may have many copies of a model

� A model might use several copies of a part

� Multiple Instantiation:

� One copy of node or subtree in memory

� Reference (pointer) inserted as child of many parents

� Not the same as instantiation in C++ terminology� Not the same as instantiation in C++ terminology

� A directed acyclic graph (DAG), not a tree

� Object appears in scene multiple times, with different
coordinates

35

Instantiation

TransformGroup

36

Scene Graph, Not Tree

� Saves memory

� May save time, depending on caching/optimization

� Change parameter once, affects all instances

� Can be good or bad, depending on what you want

� Some scene graph designs let other properties inherit from Some scene graph designs let other properties inherit from
parent

37

More Complex Operations

Articulated character

� Shape nodes that compute surface across multiple joint
nodes

� Nodes that change shape of geometry

� Very popular in gamesVery popular in games

38

Basic Rendering

TransformGroup::draw(Matrix4 C) {

C_new = C*M; // M is a class member

for all children

draw(C_new);

}

� Traverse the tree recursively

Shape3D::draw(Matrix4 C) {

setModelView(C);

setMaterial(myMaterial);

render(myObject);

}

39

Basic Rendering

TransformGroup::draw(Matrix4 C) {

C_new = C*M; // M is a class member

for all children

draw(C_new);

}

� Traverse the tree recursively

Shape3D::draw(Matrix4 C) {

setModelView(C);

setMaterial(myMaterial);

render(myObject);

}

Initiate rendering with
world->draw(IDENTITY);

40

Next Lecture

� Scene Graphs & Hierarchies

� Performance Optimization

� Curves

41

