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Announcements

� Remaining office hours in the lab before deadline:

� Iman: Thu 3:30pm-7:30pm

� Haili: Thu 3:30pm-4:30pm

� Project 1 due Friday October 1st, presentation in lab 260 from 2-5pm

� Both executable and source code required for grading. We will ask 
questions about the code!

� List your name on the whiteboard in the grading section once you get to 
the lab. Homework will be graded in this order.

� We will also have a help section on the whiteboard. List your name there 
to get help. We will give priority to the grading list! 

� Project 2 due Friday October 8th; presentation in lab 260 from 2-5pm

� Introduction by Iman on Mon at 2pm in lab 260

� Don’t save anything on the C: drive of the lab PCs! You will lose it when 
you log out.
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Objects in camera coordinates

� We have things lined up the way we like them on screen

� x to the right

� y up

� -z going into the screen

� Objects to look at are in front of us, i.e. have negative z values

But objects are still in 3D� But objects are still in 3D

� Problem: project them into 2D
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Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping

4



Rendering Pipeline

Scene data
� Hardware and software which 
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by 
specialized hardware (GPU)Rendering

Image

specialized hardware (GPU)

� Access to hardware through 
low-level 3D API (OpenGL, 
DirectX)

� All scene data flows through 
the pipeline at least once for 
each frame

Rendering

pipeline
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data
� Textures, lights, etc.

� Geometry

� Vertices and how they are 
connected

� Triangles, lines, points, triangle 
stripsShading

Projection

Rasterization,

visibility

Image

strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering 
pipeline one-by-one
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data
� Transform object to camera 
coordinates

� Specified by 
GL_MODELVIEW matrix 
in OpenGL

� User computes Shading

Projection

Rasterization,

visibility

Image

� User computes 
GL_MODELVIEW matrix 
as discussed

MODELVIEW

matrix
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

� Look up light sources

� Compute color for each Shading

Projection

Rasterization,

visibility

Image

Compute color for each 
vertex

� Covered later in the course
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image

� Project 3D vertices to 2D 
image positions

� GL_PROJECTION matrix

� Covered in today’s lecture
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image

� Draw primitives (triangles, 
lines, etc.)

� Determine what is visible

� Covered in next lecture
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image � Pixel colors
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Rendering Engine

Scene data
� Additional software layer 
encapsulating low-level API

� Higher level functionality than 
OpenGL

� Platform independent

Layered software architecture 
Rendering

Image

� Layered software architecture 
common in industry

� Game engines
http://en.wikipedia.org/wiki/Game

_engine

Rendering

pipeline
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Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping
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Projections

� Given 3D points (vertices) in camera coordinates, 
determine corresponding image coordinates

Orthographic Projection

� a.k.a. Parallel Projection� a.k.a. Parallel Projection

� Done by ignoring z-coordinate

� Use camera space xy coordinates as image coordinates
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Orthographic Projection

� Project points to x-y plane along parallel lines

� Used in graphical illustrations, architecture, 3D modeling
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Perspective Projection

� Most common for computer graphics

� Simplified model of human eye, or camera lens (pinhole 
camera)

� Things farther away appear to be smaller

� Discovery attributed to Filippo Brunelleschi (Italian � Discovery attributed to Filippo Brunelleschi (Italian 
architect) in the early 1400’s
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Perspective Projection

� Project along rays that converge in center of projection

2D image plane

Center of

projection

3D scene
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Perspective Projection

Parallel lines are

no longer parallel,

converge in one point

Earliest example:

La Trinitá (1427) by Masaccio18



Perspective Projection

The math: simplified case

1

1'

z

y

d

y
=

1'
z

dy
y =

Image plane

1z

dz ='

1

1'
z

dx
x =
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Perspective Projection

The math: simplified case

1

1'
z

dy
y =

1

1'
z

dx
x =

� We can express this using homogeneous coordinates and 
4x4 matrices

Image plane

1z

dz ='
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Perspective Projection

The math: simplified case

1

1'
z

dy
y =

1

1'
z

dx
x =

Homogeneous divisionProjection matrix

1z

dz ='
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Perspective Projection

Homogeneous divisionProjection matrix

� Using projection matrix, homogeneous division seems more complicated 
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� handle different types of projections in a unified way

� define arbitrary view volumes

� Divide by w (perspective division, homogeneous division) after performing 
projection transform

� Graphics hardware does this automatically
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Photorealistic Rendering

� More than just perspective projection

� Some effects are too complex for hardware rendering

� For example: lens effects

Focus, depth of field Fish-eye lens
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Photorealistic Rendering

Chromatic Aberration Motion Blur
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Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping
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View Volumes

� Define 3D volume seen by camera

Camera coordinates Camera coordinates

Perspective view volume Orthographic view volume

World coordinates World coordinates

26



Perspective View Volume

General view volume

Camera

coordinates

� Defined by 6 parameters, in camera coordinates 
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom
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Perspective View Volume

Symmetrical view volume

-z

FOV

y

z=-near

y=top

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes

z=-far

aspect ratio=
right − left

top − bottom
=

right

top
 

tan(FOV / 2) =
top

near
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Orthographic View Volume

� Parameterized by 6 parameters

� Right, left, top, bottom, near, far

� Or if symmetrical:

� Width, height, near, far
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Clipping

� Need to identify objects outside 
view volume
� Avoid division by zero

� Efficiency: don’t draw objects outside view 
volume (view frustum culling)

� Performed in hardwarePerformed in hardware

� Hardware always clips to the 
canonical view volume: 
cube [-1..1]x[-1..1]x[-1..1] centered 
at origin

� Need to transform desired view 
frustum to canonical view frustum
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Canonical View Volume

� Projection matrix is set such that

� User defined view volume is transformed into canonical 
view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]

� Multiplying vertices of view volume by projection matrix and 
performing homogeneous divide yields canonical view 
volume volume 

� Perspective and orthographic projection are treated 
exactly the same way

� Canonical view volume is last stage in which 
coordinates are in 3D

� Next step is projection to 2D frame buffer
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Projection Matrix

Camera coordinates

Projection matrixProjection matrix

Canonical view volume

Clipping
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Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates
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Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect 
ratio, near and far clip planes

-z

FOV

y
y=top

Camera

coordinates

Ppersp (FOV ,aspect,near, far) =

1

aspect ⋅ tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near − far

2 ⋅ near ⋅ far

near − far

0 0 −1 0





























z=-near

z=-far
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Orthographic Projection Matrix

2

right − left
0 0 −

right + left

right − left

2 top + bottom











Portho(right, left, top,bottom,near, far) =
0

2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

far − near

far + near

far − near

0 0 0 1








 










Portho(width,height,near, far) =

2

width
0 0 0

0
2

height
0 0

0 0
2

far − near

far + near

far − near

0 0 0 1


























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Viewport Transformation

� After applying projection matrix, scene points are in 
normalized viewing coordinates

� Per definition range [-1..1] x [-1..1] x [-1..1] 

� Normalized viewing coordinates can be mapped to 
image (=pixel=frame buffer) coordinatesimage (=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:

D x0 , x1, y0 , y1( )=

x1 − x0( ) 2 0 0 x0 + x1( ) 2

0 y1 − y0( ) 2 0 y0 + y1( ) 2

0 0 1 2 1 2

0 0 0 1


















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The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Object space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space
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The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Object space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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World space



The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Object space

World space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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World space

Camera space



The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Object space

World space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Camera space

Canonical view volume



The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Object space

World space

Camera space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Camera space

Image space

Canonical view volume



The Complete Transform

� Mapping a 3D point in object coordinates to pixel 
coordinates:

Pixel coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Pixel coordinates:



The Complete Transform in OpenGL

� Mapping a 3D point in object coordinates to pixel 
coordinates:

OpenGL GL_MODELVIEW matrix

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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OpenGL GL_PROJECTION matrix



The Complete Transform in OpenGL

� GL_MODELVIEW, C-1M
� Defined by programmer

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume: 

glFrustum(), glPerspective(), glOrtho()

� Do not use utility functions in homework project 2� Do not use utility functions in homework project 2

� You will implement a software renderer in project 3, which 
will not use OpenGL

� Viewport, D

� Specify implicitly via glViewport() 

� No direct access with equivalent to GL_MODELVIEW or 
GL_PROJECTION
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Next Lecture

� Viewport Transformation

� Drawing (Rasterization)

� Visibility (Z-Buffering)
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