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Announcements

� Homework assignment #5 due Friday, Nov 5

� Phi’s office hour this Friday, 1-2pm

� Midterm grading completed

� Midterm review:

� Exams returned

� Presentation of results

� Exams recollected
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Rational Curves

� Weight causes point to “pull” more (or less)

� Can model circles with proper points and weights,

� Below: rational quadratic Bézier curve (three control points)

pull less
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B-Splines

� B as in Basis-Splines

� Basis is blending function

� Resolves problem with Bézier splines:

� Control points have global scope (a change in one control 
points effects the global shape of the curve)

� Difference to Bézier blending function:

� B-spline blending function can be zero outside a particular 
range (limits scope over which a control point has influence)

� B-Spline is defined by control points and range in which 
each control point is active. Ranges are specified through 
knot vector
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NURBS

� Non Uniform Rational B-Splines

� Generalization of Bézier curves

� Invariant under projective transformation: if two objects touch 
in object space, they will still touch after projection

� Very similar to B-Splines, but with modifications made to 
accommodate points specified using homogeneous accommodate points specified using homogeneous 
coordinates

� Can exactly model conic sections (circles, ellipses)

� OpenGL support:  see gluNurbsCurve

� Live demo: http://bentonian.com/Nurbs/

� http://mathworld.wolfram.com/NURBSCurve.html
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Lecture Overview

� Bi-linear patch

� Bi-cubic Bézier patch
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Curved Surfaces

Curves

� Described by a 1D series of control points

� A function x(t)

� Segments joined together to form a longer curve

Surfaces

� Described by a 2D mesh of control points

� Parameters have two dimensions (two dimensional parameter 
domain)

� A function x(u,v)

� Patches joined together to form a bigger surface
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� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

Parametric Surface Patch
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� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

Parametric Surface Patch
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� Parametric curves

� For fixed u0 , have a v curve x(u0,v)

� For fixed v0 , have a u curve x(u,v0)

� For any point on the surface, there are a pair of parametric 
curves through that point
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Tangents

� The tangent to a parametric curve is also tangent to the 
surface

� For any point on the surface, there are a pair of (parametric) 
tangent vectors

� Note: these vectors are not necessarily perpendicular to each 
other

∂x
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v

∂x

∂u

∂x

∂v
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Tangents

• Notation:

   • The tangent along a u curve, AKA the tangent in the u direction, is written as:

                           
∂x

∂u
(u,v) or ∂

∂u
x(u,v) or xu (u,v)

   • The tangent along a v curve, AKA the tangent in the v direction, is written as:

                         
∂x

∂v
(u,v) or ∂

∂v
x(u,v) or xv (u,v)

∂v
v

• Note that each of these is a vector-valued function:

   •  At each point x(u,v) on the surface, we have tangent vectors ∂

∂u
x(u,v) and ∂

∂v
x(u,v) 
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Surface Normal

� Normal is cross 
product of the two 
tangent vectors

� Order matters! ∂x

∂u

∂x

∂v 
r
n

 

               
r
n(u,v) =

∂x

∂u
(u,v) ×

∂x

∂v
(u,v)

Typically we are interested in the unit normal, so we need to normalize

               
r
n*(u,v) =

∂x

∂u
(u,v) ×

∂x

∂v
(u,v)

               
r
n(u,v) =

r
n*(u,v)
r
n*(u,v)
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Bilinear Patch

� Control mesh with four points p0, p1, p2, p3

� Compute  x(u,v) using a two-step construction scheme

p0 p1

p2

p3

u

v
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Bilinear Patch (Step 1)

� For a given value of u, evaluate the linear curves on the two u-

direction edges

� Use the same value u for both:

q0=Lerp(u,p0,p1) q1=Lerp(u,p2,p3)

q

p0 p1

p2

p3

u

v

q0

q1
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Bilinear Patch (Step 2)

� Consider that q0, q1 define a line segment

� Evaluate it using v to get x

q

x = Lerp(v,q0 ,q1)

p0 p1

p2

p3

u

v

q0

q1
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Bilinear Patch

� Combining the steps, we get the full formula 

q

x(u,v) = Lerp(v, Lerp(u,p0 ,p1), Lerp(u,p2 ,p3))

p0 p1

p2

p3

u

v

q0

q1

x
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Bilinear Patch

� Try the other order

� Evaluate first in the v direction

r0 = Lerp(v,p0 ,p2 )     r1 = Lerp(v,p1,p3)

p0 p1

p2

p3

u

v

r0

r1
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Bilinear Patch

� Consider that r0, r1 define a line segment

� Evaluate it using u to get x

x = Lerp(u,r0 ,r1)

p0 p1
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u

v
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Bilinear Patch

� The full formula for the v direction first:

x(u,v) = Lerp(u, Lerp(v,p0 ,p2 ), Lerp(v,p1,p3))

p0 p1
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u

v
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Bilinear Patch

� Patch geometry is independent of the order of u and v

x(u,v) = Lerp(v, Lerp(u,p0 ,p1), Lerp(u,p2 ,p3))

x(u,v) = Lerp(u, Lerp(v,p0 ,p2 ), Lerp(v,p1,p3))

q
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Bilinear Patch

� Visualization
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Bilinear Patches

� Weighted sum of control points

� Bilinear polynomial

� Matrix form exists, too� Matrix form exists, too
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Properties
� Interpolates the control points

� The boundaries are straight line segments

� If all 4 points of the control mesh are co-planar, the patch is flat

� If the points are not co-planar, we get a curved surface

� saddle shape (hyperbolic paraboloid)

� The parametric curves are all straight line segments!

� a (doubly) ruled surface: has (two) straight lines through every point� a (doubly) ruled surface: has (two) straight lines through every point

� Not terribly useful as a modeling primitive
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Lecture Overview

� Bi-linear patch

� Bi-cubic Bézier patch
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Bicubic Bézier patch

� Grid of 4x4 control points, p0 through p15
� Four rows of control points define Bézier curves along u

p0,p1,p2,p3; p4,p5,p6,p7; p8,p9,p10,p11; p12,p13,p14,p15

� Four columns define Bézier curves along v
p0,p4,p8,p12; p1,p6,p9,p13; p2,p6,p10,p14; p3,p7,p11,p15

p12 p

p0
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p12 p13

p14 p15

u

v
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Bézier Patch (Step 1)

� Evaluate four u-direction Bézier curves at u

� Get points q0 … q3

p12 p q

q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7 )

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15 )

p0
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p4 p5
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Bézier Patch (Step 2)

� Points q0 … q3 define a Bézier curve

� Evaluate it at v

p12 p q

x(u,v) = Bez(v,q0 ,q1,q2 ,q3)

p0
p1

p2

p3

p4 p5
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v

q0

q1

q2

q3
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Bézier Patch

� Same result in either order (evaluate u before v or vice versa)

q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7 )

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15 )

x(u,v) = Bez(v,q0 ,q1,q2 ,q3)

  ⇔

r0 = Bez(v,p0 ,p4 ,p8 ,p12 )

r1 = Bez(v,p1,p5 ,p9 ,p13)

r2 = Bez(v,p2 ,p6 ,p10 ,p14 )

r3 = Bez(v,p3,p7 ,p11,p15 )

x(u,v) = Bez(u,r0 ,r1,r2 ,r3)
p12 p q
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Bézier Patch: Matrix Form 
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Cx = BBezGxBBez

Cy = BBez

T GyBBez

Cz = BBez

T GzBBez

        Gx =
p4 x p5 x p6 x p7 x

p8 x p9 x p10 x p11x

p12 x p13x p14 x p15 x
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Bézier Patch: Matrix Form

� Cx stores the coefficients of the bicubic equation for x

� Cy stores the coefficients of the bicubic equation for y

� Cz stores the coefficients of the bicubic equation for z

� Gx stores the geometry (x components of the control points)

� Gy stores the geometry (y components of the control points)

� Gz stores the geometry (z components of the control points)

� BBez is the basis matrix (Bézier basis)

� U and V are the vectors formed from the powers of u and v
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� U and V are the vectors formed from the powers of u and v

� Compact notation

� Leads to efficient method of computation

� Can take advantage of hardware support for 4x4 matrix arithmetic



Properties

� Convex hull: any point on the surface will fall within the convex hull of the 
control points

� Interpolates 4 corner points

� Approximates other 12 points, which act as “handles”

� The boundaries of the patch are the Bézier curves defined by the points on 
the mesh edges

The parametric curves are all Bézier curves� The parametric curves are all Bézier curves
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Tangents of a Bézier patch

� Remember parametric curves x(u,v0), x(u0,v) where v0, u0 is 
fixed

� Tangents to surface = tangents to parametric curves

� Tangents are partial derivatives of x(u,v)

� Normal is cross product of the tangents
∂x

p0
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∂vv0
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Tangents of a Bézier patch
q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7 )

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15 )

∂x

∂v
(u,v) = Be ′z (v,q0 ,q1,q2 ,q3)

         

r0 = Bez(v,p0 ,p4 ,p8 ,p12 )

r1 = Bez(v,p1,p5 ,p9 ,p13)

r2 = Bez(v,p2 ,p6 ,p10 ,p14 )

r3 = Bez(v,p3,p7 ,p11,p15 )

∂x

∂u
(u,v) = Be ′z (u,r0 ,r1,r2 ,r3)

p12
p13

∂x

∂v

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
13

p14

p15

u

v

r0 r1

r2 r3

x

q0

q1

q2

q3

∂x

∂u

∂v

33



Tessellating a Bézier patch

� Uniform tessellation is most straightforward 

� Evaluate points on a grid of u, v coordinates

� Compute tangents at each point, take cross product to get per-vertex 
normal

� Draw triangle strips (several choices of direction)

� Adaptive tessellation/recursive subdivision

� Potential for “cracks” if patches on opposite sides of an edge divide 
differently

� Tricky to get right, but can be done
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Piecewise Bézier Surface

� Lay out grid of adjacent meshes of control points
� For C0 continuity, must share points on the edge

� Each edge of a Bézier patch is a Bézier curve based only on 
the edge mesh points

� So if adjacent meshes share edge points, the patches will line 
up exactly

� But we have a crease…� But we have a crease…

Grid of control points Piecewise Bézier surface
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C1 Continuity

� We want the parametric curves that cross each edge to 
have C1 continuity

� So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html
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Modeling With Bézier Patches

� Original Utah teapot was specified with Bézier Patches
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Next Lecture

� Advanced surface modeling

� Advanced shader programming
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