
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #2: Coordinate Transformations

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2010

Announcements

� Homework introduction by Han was Monday 9:30am

� Lab sessions with TAs and tutors in lab 260:
� Han Suk: Mon/Thu 9:30am-11:30am

� Iman: Thu 3:30pm-7:30pm

� Phi: Tue/Thu 11:30am-12:30pmPhi: Tue/Thu 11:30am-12:30pm

� Haili: Tue/Thu 3:30pm-4:30pm

� Use the discussion board on WebCT instead of email
to TAs/tutors if possible:
http://webctweb.ucsd.edu

� Project 1 due Friday October 1st, presentation in lab
260

2

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

3

Vectors

� Direction and length in 3D

� Vectors can describe

� Difference between two 3D points

� Speed of an object

� Surface normals (directions perpendicular to surfaces)

Surface normals Surface

Normal vector

4

Vector arithmetic using coordinates

a =

ax

ay

az

















b =

bx

by

bz

















ax + bx





ax − bx





a + b =

a b

ay + by

az + bz

















a − b =

a b

ay − by

az − bz

















sa=

sax

say

saz

















−a=

−ax

−ay

−az

















where s is a scalar

5

Vector Magnitude

� The magnitude (length) of a vector is:

� A vector with length of 1.0 is called unit vector

v
2

= vx

2
+ vy

2
+ vz

2

v = vx

2
+ vy

2
+ vz

2

� A vector with length of 1.0 is called unit vector

� We can also normalize a vector to make it a unit
vector

� Unit vectors are often used as surface normals

v

v

6

Dot Product

a ⋅ b = aibi∑
a ⋅ b = axbx + ayby + azbza ⋅ b = axbx + ayby + azbz

a ⋅ b = a b cosθ

7

a ⋅ b = a b cosθ

cosθ =
a ⋅ b

a b








Angle Between Two Vectors

a

b

cosθ =
a b 

θ = cos−1 a ⋅ b

a b








8

a × b

a × b = a b sinθ

Cross Product

is a vector perpendicular to both a

and b, in the direction defined by

the right hand rule

area of parallelogram ab

if a and b are parallel

(or one or both degenerate)

a × b = a b sinθ

a × b =

a × b = 0

9

Cross product

10

Sample Vector Class in C++

class Vector3 {

public:

float x,y,z;

Vector3() {x=0.0; y=0.0; z=0.0;}

Vector3(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void set(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void add(Vector3 &a) {x+=a.x; y+=a.y; z+=a.z;}

void add(Vector3 &a,Vector3 &b) {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;}void add(Vector3 &a,Vector3 &b) {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;}

void subtract(Vector3 &a) {x-=a.x; y-=a.y; z-=a.z;}

void subtract(Vector3 &a,Vector3 &b) {x=a.x-b.x; y=a.y-b.y; z=a.z-b.z;}

void negate() {x=-x; y=-y; z=-z;}

void negate(Vector3 &a) {x=-a.x; y=-a.y; z=-a.z;}

void scale(float s) {x*=s; y*=s; z*=s;}

void scale(float s,Vector3 &a) {x=s*a.x; y=s*a.y; z=s*a.z;}

float dot(Vector3 &a) {return x*a.x+y*a.y+z*a.z;}

void cross(Vector3 &a,Vector3 &b)

{x=a.y*b.z-a.z*b.y; y=a.z*b.x-a.x*b.z; z=a.x*b.y-a.y*b.x;}

float magnitude() {return sqrt(x*x+y*y+z*z);}

void normalize() {scale(1.0/magnitude());}

};

Matrices

� Rectangular array of numbers

� Square matrix if m = n

� In graphics often m = n = 3; m = n = 4

12

Matrix Addition

13

Multiplication With Scalar

14

Matrix Multiplication

15

Matrix-Vector Multiplication

16

Identity Matrix

17

Matrix Inverse

If a square matrix M is non-singular, there exists a unique
inverse M-1 such that

�

18

OpenGL Matrices

� Vectors are column vectors

� “Column major” ordering

� Matrix elements stored in array of floats

float M[16];

� Corresponding matrix elements:� Corresponding matrix elements:

19

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

20

Linear Transformations

� Scaling, shearing, rotation, reflection, and combinations
thereof, of vectors

� Implemented using matrix multiplications

21

Scaling

� Uniform scaling matrix in 2D

� Analogous in 3D

22

Scaling

� Nonuniform scaling matrix in 2D

� Analogous in 3D

23

Shearing

� Shearing along x-axis in 2D

� Analogous for y-axis, in 3D

24

Rotation in 2D

� Convention: positive angle rotates counterclockwise

� Rotation matrix

25

Rotation in 3D

Rotation around coordinate axes

26

Rotation in 3D

� Concatenation of rotations around x, y, z axes

� are called Euler angles

� Result depends on matrix order!� Result depends on matrix order!

27

Rotation in 3D

Around arbitrary axis

� Rotation axis a

R(a,θ) =

1+ (1 − cos(θ))(ax

2
− 1) −az sin(θ) + (1− cos(θ))axay ay sin(θ) + (1 − cos(θ))axaz

az sin(θ) + (1− cos(θ))ayax 1+ (1− cos(θ))(ay

2
− 1) −ax sin(θ) + (1 − cos(θ))ayaz

−ay sin(θ) + (1− cos(θ))azax ax sin(θ) + (1− cos(θ))azay 1+ (1− cos(θ))(az

2
− 1)

















� Rotation axis a

� a must be a unit vector:

� Right-hand rule applies for direction of rotation

� Counterclockwise rotation

a = 1

28

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

29

Homogeneous Coordinates

� Generalization: homogeneous point

� Homogeneous coordinate

Corresponding 3D point: divide by homogeneous � Corresponding 3D point: divide by homogeneous
coordinate

30

Homogeneous coordinates

� Usually for 3D points you choose

� For 3D vectors

� Benefit: same representation for vectors and points

31

Translation

Using homogeneous coordinates

32

Translation

Using homogeneous coordinates

Matrix notationMatrix notation

Translation matrix

33

Transformations

� Add 4th row/column to 3 x 3 transformation matrices

� Example: rotation

34

Transformations

Concatenation of transformations:

� Arbitrary transformations (scale, shear, rotation,
translation)

� Build “chains” of transformations

� Result depends on order� Result depends on order

35

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

36

Affine transformations

� Generalization of linear transformations

� Scale, shear, rotation, reflection (linear)

� Translation

� Preserve straight lines, parallel lines

� Implementation using 4x4 matrices and homogeneous Implementation using 4x4 matrices and homogeneous
coordinates

37

Translation

38

Translation

• Inverse translation

39

Scaling

• Origin does not change

40

Scaling

� Inverse of scale:

41

Shear

� Pure shear if only one parameter is non-zero

42

Rotation around coordinate axis

� Origin does not change

43

Rotation around arbitrary axis

� Origin does not change

� Angle , unit axis a

�

44

Rotation matrices

� Orthonormal

� Rows, columns are unit length and orthogonal

� Inverse of rotation matrix:

� Its transpose

45

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

46

Rotating with pivot

Rotation around

origin
Rotation with

pivot

47

Rotating with pivot

1. Translation 2. Rotation 3. Translation

48

Concatenating transformations

� Arbitrary sequence of transformations

� Note: associativity

49

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

50

Change of coordinates

� Point with homogeneous coordinates

� Position in 3D given with respect to a coordinate system

51

Change of coordinates

New uvwq

coordinate system

Goal: Find coordinates of with respect to

new uvwq coordinate system
52

Change of coordinates

Coordinates of xyzo frame w.r.t. uvwq frame

53

Change of coordinates

Same point p in 3D, expressed in new uvwq frame

54

Change of coordinates

55

Change of coordinates

Inverse transformation

� Given point w.r.t. frame

� Coordinates w.r.t. frame

56

Overview

� Linear Algebra Review

� Linear Transformations

� Homogeneous Coordinates

� Affine Transformations

� Concatenating Transformations� Concatenating Transformations

� Change of Coordinates

� Common Coordinate Systems

57

Common Coordinate Systems

� Camera, world, object coordinates:

World coordinates

Object

coordinates

Camera

coordinates

Object Coordinates

� Coordinates the object is defined with

� Often origin is in middle, base, or corner of object

� No right answer, whatever was convenient for the creator
of the object

World coordinates

Object

coordinates

Camera

coordinates

World Coordinates

� “World space”

� Common reference frame for all objects in the scene

� Chosen for convenience, no right answer

� If there is a ground plane, usually x/y is horizontal and z points
up (height)

� In OpenGL x/y is screen plane, z comes out

World coordinates

Object

coordinates

Camera

coordinates

World Coordinates

� Transformation from object to world space is different
for each object

� Defines placement of object in scene

� Given by “model matrix” (model-to-world transform) M

World coordinates

Object

coordinates

Camera

coordinates

Camera Coordinate System

� “Camera space”

� Origin defines center of projection of camera

� x-y plane is parallel to image plane

� z-axis is perpendicular to image plane

World coordinates

Object

coordinates

Camera

coordinates

Camera Coordinate System

� The Camera Matrix defines the transformation from
camera to world coordinates

� Placement of camera in world

� Transformation from object to camera coordinates

World coordinates

Object

coordinates

Camera

coordinates

Camera Matrix

� Construct from center of projection e, look at d, up-
vector up:

World coordinates

Camera

coordinates

Camera Matrix

� Construct from center of projection e, look at d, up-
vector up:

World coordinates

Camera

coordinates

Camera Matrix

� z-axis

� x-axis

� y-axis

Inverse of Camera Matrix

� How to calculate the inverse of the camera matrix C-1?

� Generic matrix inversion is complex and compute-
intensive

� Observation:

� camera matrix consists of rotation and translation: R x Tcamera matrix consists of rotation and translation: R x T

� Inverse of rotation: R-1 = RT

� Inverse of translation: T(t)-1 = T(-t)

� Inverse of camera matrix: C-1 = T-1 x R-1

67

Objects in Camera Coordinates

� We have things lined up the way we like them on screen

� x to the right

� y up

� -z going into the screen

� Objects to look at are in front of us, i.e. have negative z values

But objects are still in 3D� But objects are still in 3D

� Next step: project scene into 2D

Next Lecture

� Rendering Pipeline

� Perspective Projection

69

