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Announcements

� Homework assignment #5 due Friday, Nov 5

� Phi is not having an office hour this Thursday

� Instead, Phi’s office hour will be this Friday, 1-2pm

� Midterm grading to be completed by Thursday
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Lecture Overview

� Bézier curves

� Drawing Bézier curves

� Piecewise Bézier curves
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Polynomial Functions

� Linear:
(1st order)

� Quadratic:
(2nd order)(2nd order)

� Cubic:
(3rd order)
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� Three equivalent ways to write the equation

� Each emphasizes different properties

1. Weighted sum of the control points

Linear Interpolation

2. Polynomial in t

3. Matrix form
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Bézier Curves

� Are a higher order extension of linear interpolation

p1

p1

p2

p1

p0

p1

p0
p0

p2

p3

Linear Quadratic Cubic
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Bézier Curves

� Give intuitive control over curve with control points
� Endpoints are interpolated, intermediate points are 
approximated

� Convex Hull property

� Variation-Diminishing property

� Many demo applets online� Many demo applets online
Examples:
� Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

� http://www.theparticle.com/applets/nyu/BezierApplet/

� http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/
Bezier/bezier.html
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Cubic Bézier Curve

� Most common case

� Defined by four control points:
� Two interpolated endpoints (points are on the curve)

� Two points control the tangents at the endpoints

8



Cubic Bézier Curve

p1

� Define point x on the curve as a function of parameter t

•
p0

p2

p3

x(t)
•
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Bézier Curve Formulation

� Three alternatives, analogous to linear case

1. Weighted average of control points

2. Cubic polynomial function of t

3. Matrix form

� Algorithmic construction

� De Casteljau algorithm, developed at Citroen in 1959

� Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm
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De Casteljau Algorithm

� A recursive series of linear interpolations

� Works for any order, not only cubic

� Not very efficient to evaluate

� Other forms more commonly used

� Why study it? Why study it? 

� Intuition about the geometry

� Useful for subdivision (later today)
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De Casteljau Algorithm

p0

p1

p2

� Given:

� Four control points

� A value of t (here t≈0.25)

p2

p3
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De Casteljau Algorithm

p0

q0

p1

p2

q1

q0 (t) = Lerp t,p0 ,p1( )

q (t) = Lerp t,p ,p( )
p2

p3

q2

q1(t) = Lerp t,p1,p2( )

q2 (t) = Lerp t,p2 ,p3( )
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De Casteljau Algorithm

q0

q1

r1

r0

r (t) = Lerp t,q (t),q (t)( )

q2

r0 (t) = Lerp t,q0 (t),q1(t)( )

r1(t) = Lerp t,q1(t),q2 (t)( )
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De Casteljau Algorithm

r1x

r0
•

= ( )x(t) = Lerp t,r0 (t),r1(t)( )
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x
•

p0

p1

p2

De Casteljau Algorithm

p3�Applets
� Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html

� http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html
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x = Lerp t,r0 ,r1( )
r0 = Lerp t,q0 ,q1( )

r1 = Lerp t,q1,q2( )

q0 = Lerp t,p0 ,p1( )

q1 = Lerp t,p1,p2( )

q2 = Lerp t,p2 ,p3( )

p0

p1

p2

p3

Recursive Linear Interpolation

p3

        p1

q0

r0 p2

x q1

r1 p3

q2

p4
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Expand the LERPs

q0 (t) = Lerp t,p0 ,p1( )= 1− t( )p0 + tp1

q1(t) = Lerp t,p1,p2( )= 1− t( )p1 + tp2

q2 (t) = Lerp t,p2 ,p3( )= 1− t( )p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )

r1(t) = Lerp t,q1(t),q2 (t)( )= 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )

x(t) = Lerp t,r0 (t),r1(t)( )

= 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

       +t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )
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x(t) = 1 − t( ) 1− t( ) 1 − t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

+t 1− t( ) 1 − t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

x(t) = 1 − t( )
3
p + 3 1 − t( )

2
tp + 3 1 − t( )t

2
p + t

3
p

Weighted Average of Control Points

� Regroup

 

x(t) = 1 − t( )
3
p0 + 3 1 − t( )

2
tp1 + 3 1 − t( )t

2
p2 + t

3
p3

x(t) = −t
3

+ 3t
2

− 3t + 1( )

B0 (t )6 7444 8444

p0 + 3t
3

− 6t
2

+ 3t( )

B1 (t )6 744 844

p1

+ −3t
3

+ 3t
2( )

B2 (t )

1 24 34
p2 + t

3( )
B3 (t )

{
p3
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                    x(t) = B0 t( )p0 + B1 t( )p1 + B2 t( )p2 + B3 t( )p3

The cubic Bernstein polynomials :

                    B0 t( )= −t
3

+ 3t
2

− 3t + 1

                    B1 t( )= 3t
3

− 6t
2

+ 3t

                    B t( )= −3t
3

+ 3t
2

Cubic Bernstein Polynomials

� Partition of unity, weights always add up to 1

� Endpoint interpolation, B0 and B3 go to 1

                    B2 t( )= −3t
3

+ 3t
2

                    B3 t( )= t
3                        

                Bi (t) = 1∑
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General Bernstein Polynomials

B0

1
t( )= −t + 1      B0

2
t( )= t

2
− 2t + 1     B0

3
t( )= −t

3
+ 3t

2
− 3t + 1

B1

1
t( )= t B1

2
t( )= −2t

2
+ 2t B1

3
t( )= 3t

3
− 6t

2
+ 3t

B2

2
t( )= t

2
B2

3
t( )= −3t

3
+ 3t

2

B3

3
t( )= t

3

Bi

n
t( )=

n

i







1 − t( )

n− i
t( )

i n

i







=

n!

i! n − i( )!

Bi

n
t( )∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
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General Bézier Curves

� nth-order Bernstein polynomials form nth-order 
Bézier curves

Bi

n
t( )=

n

i







1− t( )

n− i
t( )

i

i 

x t( )= Bi

n
t( )pi

i=0

n

∑
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Bézier Curve Properties

Overview:

� Convex Hull property

� Variation Diminishing property

� Affine Invariance
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Definitions

� Convex hull of a set of points:

� Polyhedral volume created such that all lines connecting any 
two points lie completely inside it (or on its boundary)

� Convex combination of a set of points:

� Weighted average of the points, where all weights between 0 
and 1, sum up to 1and 1, sum up to 1

� Any convex combination always of a set of points lies 
within the convex hull
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Convex Hull Property

� A Bézier curve is a convex combination of the control points 
(by definition, see Bernstein polynomials)

� Bézier curve is always inside the convex hull

� Makes curve predictable

� Allows culling, intersection testing, adaptive tessellation 

p0

p1

p2

p3
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Variation Diminishing Property

� If the curve is in a plane, this means no straight line 
intersects a Bézier curve more times than it intersects 
the curve's control polyline

� “Curve is not more wiggly than control polyline” 
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Affine Invariance

Transforming Bézier curves

� Two ways to transform:

� Transform the control points, then compute resulting spline 
points

� Compute spline points then transform them

Either way, we get the same points� Either way, we get the same points

� Curve is defined via affine combination of points

� Invariant under affine transformations

� Convex hull property remains true
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Start with Bernstein form:

       x(t) = −t
3

+ 3t
2

− 3t + 1( )p0 + 3t
3

− 6t
2

+ 3t( )p1 + −3t
3

+ 3t
2( )p2 + t

3( )p3

Regroup into coefficients of t :

x(t) = −p0 + 3p1 − 3p2 + p3( )t 3
+ 3p0 − 6p1 + 3p2( )t 2

+ −3p0 + 3p1( )t + p0( )1

a = −p + 3p − 3p + p( )

Cubic Polynomial Form

� Good for fast evaluation
� Precompute constant coefficients (a,b,c,d) 

� Not much geometric intuition

x(t) = at
3

+ bt
2

+ ct + d

a = −p0 + 3p1 − 3p2 + p3( )

b = 3p0 − 6p1 + 3p2( )

c = −3p0 + 3p1( )

d = p0( )
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x(t) =
r
a

r
b

r
c d 

t
3

t
2

t

1



















r
a = −p0 + 3p1 − 3p2 + p3( )
r
b = 3p0 − 6p1 + 3p2( )
r
c = −3p0 + 3p1( )

d = p0( )

−1 3 −3 1  t
3 

Cubic Matrix Form

� Other cubic splines use different basis matrix B

� Hermite, Catmull-Rom, B-Spline, …

 

x(t) = p0 p1 p2 p3[ ]

GBez

1 2444 3444

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















BBez

1 2444 3444

t
3

t
2

t

1



















T
{
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Cubic Matrix Form

xx (t) = p0 x p1x p2 x p3x[ ]

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















� In 3D: 3 parallel equations for x, y and z:

xy (t) = p0 y p1y p2 y p3y
 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















xz (t) = p0z p1z p2z p3z 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1


















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� Bundle into a single matrix

x(t) =

p0 x p1x p2 x p3x

p0 y p1y p2 y p3y

p0z p1z p2z p3z

















−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















Matrix Form

� Efficient evaluation
� Precompute C

� Take advantage of existing 4x4 matrix hardware support

x(t) = GBezBBezT

x(t) = C T
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Lecture Overview

� Bézier curves

� Drawing Bézier curves

� Piecewise Bézier curves
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Drawing Bézier Curves

� Draw line segments or individual pixels

� Approximate the curve as a series of line segments 
(tessellation)

� Uniform sampling

� Adaptive sampling

� Recursive subdivision
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Uniform Sampling

� Approximate curve with N straight segments

� N chosen in advance

� Evaluate

 

xi = x ti( ) where ti =
i

N
 for i = 0, 1,K, N

xi =
r
a

i
3

N
3

+
r
b

i
2

N
2

+
r
c

i

N
+ d

� Connect the points with lines

� Too few points?

� Poor approximation

� “Curve” is faceted

� Too many points?

� Slow to draw too many line segments

� Segments may draw on top of each other

x4

x0

x1

x2

x3

x(t)
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Adaptive Sampling

� Use only as many line segments as you need

� Fewer segments where curve is mostly flat

� More segments where curve bends

� Segments never smaller than a pixel

� Various schemes for sampling, checking results, � Various schemes for sampling, checking results, 
deciding whether to sample more

x(t)
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Recursive Subdivision

� Any cubic curve segment can be expressed as a 
Bézier curve

� Any piece of a cubic curve is itself a cubic curve

� Therefore:

� Any Bézier curve can be broken up into smaller Bézier � Any Bézier curve can be broken up into smaller Bézier 
curves
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De Casteljau Subdivision

xp0

p1

p2

q0
r0

r1

� De Casteljau construction points
are the control points of two Bézier
sub-segments

p3

q2
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Adaptive Subdivision Algorithm

� Use de Casteljau construction to split Bézier segment

� For each half

� If flat enough: draw line segment

� Else: recurse

� Curve is flat enough if hull is flat enoughCurve is flat enough if hull is flat enough

� Test how far the handles are from a straight segment

� If it is about the distance of a pixel, the hull is flat enough
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Drawing Bézier Curves With OpenGL

� Indirect OpenGL support for drawing curves:

� Define evaluator map (glMap)

� Draw line strip by evaluating map (glEvalCoord)

� Optimize by pre-computing coordinate grid (glMapGrid and 
glEvalMesh)

� More details about OpenGL implementation:� More details about OpenGL implementation:

� http://www.cs.duke.edu/courses/fall09/cps124/notes/12_curves
/opengl_nurbs.pdf
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Lecture Overview

� Bézier curves

� Drawing Bézier curves

� Piecewise Bézier curves
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More Control Points

� Cubic Bézier curve limited to 4 control points
� Cubic curve can only have one inflection (point where curve changes 

direction of bending)

� Need more control points for more complex curves

� k-1 order Bézier curve with k control points

� Hard to control and hard to work with
� Intermediate points don’t have obvious effect on shape

� Changing any control point changes the whole curve

� Want local support: each control point only influences nearby portion of 
curve
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Piecewise Curves
� Sequence of simple (low-order) curves, end-to-end

� Known as a piecewise polynomial curve

� Sequence of line segments
� Piecewise linear curve

� Sequence of cubic curve segments
� Piecewise cubic curve (here piecewise Bézier)
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Continuity
� Goal: smooth curves

� C0 continuity
� No gaps

� Segments meet at the endpoints

� C1 continuity: first derivative is well defined
� No corners

� Tangents/normals are C0 continuous (no jumps)

� C2 continuity: second derivative is well defined� C2 continuity: second derivative is well defined
� Tangents/normals are C1 continuous

� Important for high quality reflections

43



Global Parameterization

� Given N curve segments x0(t), x1(t), …, xN-1(t)

� Each is parameterized for t from 0 to 1
� Define a piecewise curve

� Global parameter u from 0 to N

=

x0 (u), 0 ≤ u ≤ 1

x1(u − 1), 1 ≤ u ≤ 2





� Alternate: solution u also goes from 0 to 1

 

x(u) =
x1(u − 1), 1 ≤ u ≤ 2

M M

xN −1(u − N − 1( )),    N − 1 ≤ u ≤ N









x(u) = xi (u − i),  where i = u     (and x(N ) = xN −1(1))

x(u) = xi (Nu − i),  where i = Nu 
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� Given N+1 points p0, p1, …, pN

� Define curve

Piecewise-Linear Curve

x(u) = Lerp(u − i,pi ,pi+1),           i ≤ u ≤ i + 1

= (1− u + i)pi + (u − i)p i+1,   i = u 

p1

p

p3

p4 p6

x(1.5) x(2.9)

� N+1 points define N linear segments
� x(i)=pi

� C0 continuous by construction 
� C1 at pi when pi-pi-1 = pi+1-pi

p0

p2
p4

p5

p6
x(5.25)
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Piecewise Bézier curve

• Given 3N + 1 points p0 ,p1,K,p3N

• Define N Bézier segments:

x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6

M

 

M

           xN −1(t) = B0 (t)p3N − 3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12
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Piecewise Bézier Curve

           x(u) =

x0 ( 1

3
u), 0 ≤ u ≤ 3

x1(
1

3
u − 1), 3 ≤ u ≤ 6

M M

xN −1(
1

3
u − (N − 1)), 3N − 3 ≤ u ≤ 3N













� Parameter in 0<=u<=3N

 
           x(u) = xi

1

3
u − i( ), where i = 1

3
u 

x0(t)
x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12
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� 3N+1 points define N Bézier segments
� x(3i)=p3i

� C0 continuous by construction 
� C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

� C2 is harder to achieve

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
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Piecewise Bézier Curves

� Used often in 2D drawing programs

� Inconveniences
� Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3) 
control points

� Some points interpolate, others approximate

� Need to impose constraints on control points to obtain C1 
� Need to impose constraints on control points to obtain C
continuity

� C2 continuity more difficult

� Solutions
� User interface using “Bézier handles”

� Generalization to B-splines or NURBS (details later)
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Bézier Handles

� Segment end points 
(interpolating) 
presented as curve 
control points

� Midpoints 
(approximating (approximating 
points) presented as 
“handles”

� Can have option to 
enforce C1 continuity

Adobe Illustrator
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Next Lecture

� Midterm results

� Parametric surfaces
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