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Announcements

» Homework assighment #5 due Friday, Nov 5

» Phi is not having an office hour this Thursday

» Instead, Phi’s office hour will be this Friday, |-2pm
» Midterm grading to be completed by Thursday



Lecture Overview

» Bézier curves
» Drawing Bézier curves

» Piecewise Bézier curves



Polynomial Functions

» Linear: f(t)=at+b 7t)

(It order) /

» Quadratic:  f(t) = at® 4+ bt + ¢
(2" order)

» Cubic: f(t) — at? +btP +ct+d >
(374 order) e




Linear Interpolation

»  Three equivalent ways to write the equation

»  Each emphasizes different properties

Weighted sum of the control points
x(t) = po(1 — t) + pit
2. Polynomial in t

x(t) = (p1 — Po)t + Po
3.  Matrix form

oetoml[4][1



Bézier Curves

» Are a higher order extension of linear interpolation
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Bézier Curves

» Give intuitive control over curve with control points

Endpoints are interpolated, intermediate points are
approximated

Convex Hull property
Variation-Diminishing property
» Many demo applets online
Examples:

Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

http://www.theparticle.com/applets/nyu/BezierApplet/

http://www.sunsite.ubc.ca/lLivingMathematics/VOOINO1/UBCExamples/
Bezier/bezier.html




Cubic Beézier Curve

» Most common case

» Defined by four control points:
Two interpolated endpoints (points are on the curve)
Two points control the tangents at the endpoints



Cubic Beézier Curve

» Define point x on the curve as a function of parameter ¢

P

Po X(1)
P>



Beézier Curve Formulation

» Three alternatives, analogous to linear case
Weighted average of control points
Cubic polynomial function of ¢

Matrix form

» Algorithmic construction
De Casteljau algorithm, developed at Citroen in 1959

Developed independently from Beézier’s work:
Bézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm
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De Casteljau Algorithm

» A recursive series of linear interpolations

Works for any order, not only cubic

» Not very efficient to evaluate

Other forms more commonly used
» Why study it?
Intuition about the geometry

Useful for subdivision (later today)
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De Casteljau Algorithm

» Given:

Four control points
A value of 1 (here r=0.25)

Py
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De Casteljau Algorithm

a
q,(1)= Lerp(t,po:P1) py”

q,(t)= Lerp(t,p,,p, )
q,(t)= Lerp(t,p,,p; )

Ps
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De Casteljau Algorithm

r, (1) = Lerp (t,4,(1),q,(1))
r,(1) = Lerp (t,q, (1), q, (1))
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De Casteljau Algorithm

_________
—————

x(t)= Lerp(t,x,(t),r,(t))
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De Casteljau Algorithm

» Applets ;

Demo:
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Recursive Linear Interpolation

P
4o = Lerp(t,po,pl) "

q, = Lerp(t,pl,pz)
4, = Lerp(t,pz,p3)

r, = Lerp(t,4,.9; )

=L [T,
X el”p( Iy rl)l'l — Lerp(t,qp‘h)

P,
P
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Expand the LERPs

q,(t) = Lerp(t,py»p, )= (1—1)p, +1p,
q,(t)= Lerp(t,p,.p,)=(1—1)p, +p,
q,(t)= Lerp(t,p,.p;)=(1—1)p, +p,

r,(t)= Lerp(t,q,(),q,())=(1-1)((1-t)p, +tp, )+t ((1-1)p, +1p,)
r,(t)= Lerp(t,q,(t),q,(®))=(1—t)(1-t)p, +tp, )+t (1 - 1)p, + tp;)

x(t)= Lerp(t,r,(t),1,(1))
=(1-1)((t-)(-1)p, +1p, )+ ((1-1)p, +1p,))
+t((-2)((1=1)p, +1p, )+ 1((1-1)p, +1p,))
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Weighted Average of Control Points

» Regroup
x(t)=(1-t)((1-1)(1-1)p, +p, )+ 1((1—1)p, +1p,))

+ (1=1)((1=1)p, + 1, )+1((1-1)p, +m,))

x®)=(0-1)p, +30—-1) p, +3(1-1)*p, +1°p,

Bojst) BIJSI)

x(1) = (—t3 +317 =3t + 1)p0 + (3t3 — 61 + 3t>p1

+(=363 + 3¢ )p, + (7 )p,

Bzv(t) B; (1)

19



Cubic Bernstein Polynomials

x(t)= B, (1)p, + B,(¢)p, + B, (t)p, + B, (1 )p;

The cubic Bernstein polynomials :
B, (t)=—t>+3t"-3t+1
B, (t)=3t> -6t +3t

B,(t)=-3t+3¢t
B.(1)="¢

Y B()=1

Bernstein Cubic Polynomials
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» Partition of unity, weights always add up to |

» Endpoint interpolation, B, and B; go to 1
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General Bernstein Polynomials
B (t)=-t+1 B (t)=t"-2t+1 B(t)=—t+3t>-3t+1
B/ (t)=t B’ (t)=-2t> + 2t B (t)=3t"-6t+3t
B;(t)="r B} (t)=-3t+3t
Bi(t)=t

Bernstein Cubic Polynomials

" B0 B By B [/
.,

B (f)Z[':)“")"_i(”i U zv(nnlz)'

ZBin (t): 1 n! = factorial of n

(n+1)! =nl x (n+1)
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General Bézier Curves

» nth-order Bernstein polynomials form nth-order
Bézier curves

B O=")0-0"0
x()=25 O,
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Bézier Curve Properties

Overview:
» Convex Hull property
» Variation Diminishing property

» Affine Invariance
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Definitions

» Convex hull of a set of points:

Polyhedral volume created such that all lines connecting any
two points lie completely inside it (or on its boundary)

» Convex combination of a set of points:

Weighted average of the points, where all weights between 0
and |, sum up to |

» Any convex combination always of a set of points lies
within the convex hull
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Convex Hull Property

» A Bézier curve is a convex combination of the control points
(by definition, see Bernstein polynomials)

» Bezier curve is always inside the convex hull
Makes curve predictable

Allows culling, intersection testing, adaptive tessellation
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Variation Diminishing Property

» If the curve is in a plane, this means no straight line
intersects a Bezier curve more times than it intersects

the curve's control polyline
» “Curve is not more wiggly than control polyline”

"
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Affine Invariance

Transforming Bézier curves

» Two ways to transform:

Transform the control points, then compute resulting spline
points

Compute spline points then transform them

» Either way, we get the same points
Curve is defined via affine combination of points
Invariant under affine transformations

Convex hull property remains true
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Cubic Polynomial Form

Start with Bernstein form:

x(t)= (=1 +3> = 3t + 1)p, + (317 = 617 + 3t )p, + (=3¢ + 3¢* Jp, + (* Jp,

Regroup into coefficients of 7 :

x(t)= (-p, +3p, = 3p, +p; )’ +(3p, — 6p, + 3p, )t* +(-3p, + 3p, )t + (p, )1

a=(-p,+3p,—3p,+p;)
b= (3p0 —op, + 3p2)

c= (_3p0 + 3p1)

d= (po)

» Good for fast evaluation

Precompute constant coefficients (a,b,c,d)
» Not much geometric intuition

x(t)=at’ +bt* +ct+d
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Cubic Matrix Form

a=(-
b=(
d
] :
d:(po)
-1 3 -3 1
3 -6 3 0
x(t)=[po P P p3] 3 3 0 0
1 0 0 O
G, B

» Other cubic splines use different basis matrix B

Bez

Hermite, Catmull-Rom, B-Spline, ...
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Cubic Matrix Form

» In 3D: 3 parallel equations for x,y and z:

Xx(t): [pOx plx

x,()=|p,, D,

x,()=[p,, P

30

p2x p3x]

P, p3y:|
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Matrix Form

» Bundle into a single matrix

pOx plx p2x p3x 3 _6
XW)=|Poy Py Poy Pyl 5 4
_pOZ plz pZZ p3Z_ 1 O

X(t) = GBezBBeZT
x1)=CT

» Efficient evaluation

Precompute C
Take advantage of existing 4x4 matrix hardware support
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Lecture Overview

» Bézier curves
» Drawing Bézier curves

» Piecewise Bézier curves
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Drawing Bezier Curves

» Draw line segments or individual pixels
» Approximate the curve as a series of line segments
(tessellation)
Uniform sampling
Adaptive sampling

Recursive subdivision
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Uniform Sampling

» Approximate curve with N straight segments
N chosen in advance

i :
Evaluate X, = X(ti) Where ti g for 1 = O, 1,..., N

N
X —a

Connect the points with lines

» Too few points!?
Poor approximation

“Curve’ is faceted

» Too many points?
Slow to draw too many line segments

Segments may draw on top of each other
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Adaptive Sampling

» Use only as many line segments as you need
Fewer segments where curve is mostly flat
More segments where curve bends

Segments never smaller than a pixel

» Various schemes for sampling, checking results,
deciding whether to sample more

X(1)
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Recursive Subdivision

» Any cubic curve segment can be expressed as a
Bézier curve

» Any piece of a cubic curve is itself a cubic curve

» Therefore;:

Any Bézier curve can be broken up into smaller Bézier
curves
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De Casteljau Subdivision

» De Casteljau construction points
are the control points of two Bézier
sub-segments
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Adaptive Subdivision Algorithm

» Use de Casteljau construction to split Bézier segment
» For each half

If flat enough: draw line segment

Else: recurse
» Curve is flat enough if hull is flat enough
» Test how far the handles are from a straight segment

If it is about the distance of a pixel, the hull is flat enough
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Drawing Bezier Curves With OpenGL

» Indirect OpenGL support for drawing curves:
Define evaluator map (g1Map)
Draw line strip by evaluating map (g1EvalCoord)
Optimize by pre-computing coordinate grid (g1MapGrid and
glEvalMesh)

» More details about OpenGL implementation:
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Lecture Overview

» Bézier curves
» Drawing Bézier curves

» Piecewise Bézier curves
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More Control Points

» Cubic Bézier curve limited to 4 control points

Cubic curve can only have one inflection (point where curve changes
direction of bending)

Need more control points for more complex curves

» k-1 order Bézier curve with k control points

End control segments
control end-tangents

» Hard to control and hard to work with
Intermediate points don’t have obvious effect on shape
Changing any control point changes the whole curve
Want local support: each control point only influences nearby portion of
curve
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Piecewise Curves

» Sequence of simple (low-order) curves, end-to-end
Known as a piecewise polynomial curve

» Sequence of line segments
Piecewise linear curve

TN

» Sequence of cubic curve segments
Piecewise cubic curve (here piecewise Bézier)

./_\\
./H\.x \/ .-k../‘
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Continuity

» Goal: smooth curves
» COcontinuity
No gaps
Segments meet at the endpoints
» C! continuity: first derivative is well defined
No corners
Tangents/normals are C° continuous (no jumps)

» C? continuity: second derivative is well defined
Tangents/normals are C' continuous
Important for high quality reflections

Cy continuit/-.\ Co & C4 conlinuitgf' Cp & C; & C, continuity
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Global Parameterization

» Given N curve segments X(?), X,(?), ..., Xy_;(?)
» Each is parameterized for ¢ from O to |

» Define a piecewise curve
Global parameter u from 0 to N

(x, (1), 0<uc<l

—-1), ISu<?2

Xy (u—-(N-1)), N-1<u<N

x(u)=x,(u—i), wherei=|u| (andx(N)=x, (1))

» Alternate: solution u also goes from 0O to |
x(u) = x,(Nu—i), where i=| Nu |

44



Piecewise-Linear Curve

» Given N+1 points py, Pys -« Py

» Define curve
X(u)= Lerp(u—1,p,,P,.,) iSu<i+l

=(—u+ip,+w—ip;,,, i=|u]

X(2.9)

x(1.5)

Po Ps

» N+1 points define N linear segments

> X(1)=Pp;
» COcontinuous by construction

» Clat p; when pp,.; = P, P;
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Piecewise Bézier curve
e Given 3N +1 points p,,P,».--> Py
e Define N Bézier segments:
X,(t) = B,(t)p, + B,(1)p, + B,(1)p, + B;(1)p;
X,(t)=B,(1)p, + B,(1)p, + B,(1)ps + B;(1)P;

XN_1(t) — Bo(t)p3N—3 + Bl(t)p3N—2 + Bz(t)p3N—1 + B3(t)p3N

p7. Pg

TN
X, t
Pog ) '-~~£9

L
= Sax) .
I/méﬁ\)/ [ P
Po ‘ X,(t P1o Pii

® @
P4 Ps
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Piecewise Beézier Curve

» Parameter in O<=u<=3N
X, (3u), O0<u<3

X,(2u—1), 3<u<6

X(u):{

Xy Gu—(N-1)), 3N-3<u<3N

x(u)=x,(lu—i), wherei=|1u|

. X(8.75)
Ny
. ° » XZ(t) .~I X3(t)
1@1 X,(t) '\T/J
u=o e
X(3.5)
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Piecewise Beézier Curve

3N+1 points define N Bézier segments =N

x(31)=py; S ]

CP continuous by construction
C! continuous at py; when ps; - 3 = Py - P
C? is harder to achieve

Py P,

C! discontinuous C! continuous
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Piecewise Bezier Curves

» Used often in 2D drawing programs

» Inconveniences

Must have 4 or 7 or 10 or I3 or ... (I plus a multiple of 3)
control points

Some points interpolate, others approximate

Need to impose constraints on control points to obtain C!
continuity

C2 continuity more difficult

» Solutions
User interface using “Bézier handles”
Generalization to B-splines or NURBS (details later)
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Bézier Handles

3 Segment end Points == m:’Euw ——
(interpolating)
presented as curve
control points
» Midpoints
(approximating “ /, |
points) presented as [ J [e—
“handles” pm— —" iR
e
» Can have optionto |57 " —
enforce C' continuity [F . =
::u v| d[s 0 ; @ s o0 a5
dy[gan v WH[z0 --n, — o
e i

Adobe Illustrator
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Next Lecture

» Midterm results

» Parametric surfaces
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