
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #3: Projection

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2010

Announcements

� Remaining office hours in the lab before deadline:

� Iman: Thu 3:30pm-7:30pm

� Haili: Thu 3:30pm-4:30pm

� Project 1 due Friday October 1st, presentation in lab 260 from 2-5pm

� Both executable and source code required for grading. We will ask
questions about the code!

� List your name on the whiteboard in the grading section once you get to
the lab. Homework will be graded in this order.

� We will also have a help section on the whiteboard. List your name there
to get help. We will give priority to the grading list!

� Project 2 due Friday October 8th; presentation in lab 260 from 2-5pm

� Introduction by Iman on Mon at 2pm in lab 260

� Don’t save anything on the C: drive of the lab PCs! You will lose it when
you log out.

2

Objects in camera coordinates

� We have things lined up the way we like them on screen

� x to the right

� y up

� -z going into the screen

� Objects to look at are in front of us, i.e. have negative z values

But objects are still in 3D� But objects are still in 3D

� Problem: project them into 2D

3

Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping

4

Rendering Pipeline

Scene data
� Hardware and software which
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by
specialized hardware (GPU)Rendering

Image

specialized hardware (GPU)

� Access to hardware through
low-level 3D API (OpenGL,
DirectX)

� All scene data flows through
the pipeline at least once for
each frame

Rendering

pipeline

5

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data
� Textures, lights, etc.

� Geometry

� Vertices and how they are
connected

� Triangles, lines, points, triangle
stripsShading

Projection

Rasterization,

visibility

Image

strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering
pipeline one-by-one

6

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data
� Transform object to camera
coordinates

� Specified by
GL_MODELVIEW matrix
in OpenGL

� User computes Shading

Projection

Rasterization,

visibility

Image

� User computes
GL_MODELVIEW matrix
as discussed

MODELVIEW

matrix

7

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

� Look up light sources

� Compute color for each Shading

Projection

Rasterization,

visibility

Image

Compute color for each
vertex

� Covered later in the course

8

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image

� Project 3D vertices to 2D
image positions

� GL_PROJECTION matrix

� Covered in today’s lecture

9

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image

� Draw primitives (triangles,
lines, etc.)

� Determine what is visible

� Covered in next lecture

10

Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image � Pixel colors
11

Rendering Engine

Scene data
� Additional software layer
encapsulating low-level API

� Higher level functionality than
OpenGL

� Platform independent

Layered software architecture
Rendering

Image

� Layered software architecture
common in industry

� Game engines
http://en.wikipedia.org/wiki/Game

_engine

Rendering

pipeline

12

Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping

13

Projections

� Given 3D points (vertices) in camera coordinates,
determine corresponding image coordinates

Orthographic Projection

� a.k.a. Parallel Projection� a.k.a. Parallel Projection

� Done by ignoring z-coordinate

� Use camera space xy coordinates as image coordinates

14

Orthographic Projection

� Project points to x-y plane along parallel lines

� Used in graphical illustrations, architecture, 3D modeling

15

Perspective Projection

� Most common for computer graphics

� Simplified model of human eye, or camera lens (pinhole
camera)

� Things farther away appear to be smaller

� Discovery attributed to Filippo Brunelleschi (Italian � Discovery attributed to Filippo Brunelleschi (Italian
architect) in the early 1400’s

16

Perspective Projection

� Project along rays that converge in center of projection

2D image plane

Center of

projection

3D scene

17

Perspective Projection

Parallel lines are

no longer parallel,

converge in one point

Earliest example:

La Trinitá (1427) by Masaccio18

Perspective Projection

The math: simplified case

1

1'

z

y

d

y
=

1'
z

dy
y =

Image plane

1z

dz ='

1

1'
z

dx
x =

19

Perspective Projection

The math: simplified case

1

1'
z

dy
y =

1

1'
z

dx
x =

� We can express this using homogeneous coordinates and
4x4 matrices

Image plane

1z

dz ='

20

Perspective Projection

The math: simplified case

1

1'
z

dy
y =

1

1'
z

dx
x =

Homogeneous divisionProjection matrix

1z

dz ='

21

Perspective Projection

Homogeneous divisionProjection matrix

� Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� handle different types of projections in a unified way

� define arbitrary view volumes

� Divide by w (perspective division, homogeneous division) after performing
projection transform

� Graphics hardware does this automatically

22

Photorealistic Rendering

� More than just perspective projection

� Some effects are too complex for hardware rendering

� For example: lens effects

Focus, depth of field Fish-eye lens

23

Photorealistic Rendering

Chromatic Aberration Motion Blur

24

Lecture Overview

� Rendering Pipeline

� Projections

� View Volumes, Clipping

25

View Volumes

� Define 3D volume seen by camera

Camera coordinates Camera coordinates

Perspective view volume Orthographic view volume

World coordinates World coordinates

26

Perspective View Volume

General view volume

Camera

coordinates

� Defined by 6 parameters, in camera coordinates
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom

27

Perspective View Volume

Symmetrical view volume

-z

FOV

y

z=-near

y=top

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes

z=-far

aspect ratio=
right − left

top − bottom
=

right

top

tan(FOV / 2) =
top

near

28

Orthographic View Volume

� Parameterized by 6 parameters

� Right, left, top, bottom, near, far

� Or if symmetrical:

� Width, height, near, far

29

Clipping

� Need to identify objects outside
view volume
� Avoid division by zero

� Efficiency: don’t draw objects outside view
volume (view frustum culling)

� Performed in hardwarePerformed in hardware

� Hardware always clips to the
canonical view volume:
cube [-1..1]x[-1..1]x[-1..1] centered
at origin

� Need to transform desired view
frustum to canonical view frustum

30

Canonical View Volume

� Projection matrix is set such that

� User defined view volume is transformed into canonical
view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]

� Multiplying vertices of view volume by projection matrix and
performing homogeneous divide yields canonical view
volume volume

� Perspective and orthographic projection are treated
exactly the same way

� Canonical view volume is last stage in which
coordinates are in 3D

� Next step is projection to 2D frame buffer

31

Projection Matrix

Camera coordinates

Projection matrixProjection matrix

Canonical view volume

Clipping

32

Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates

33

Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

-z

FOV

y
y=top

Camera

coordinates

Ppersp (FOV ,aspect,near, far) =

1

aspect ⋅ tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near − far

2 ⋅ near ⋅ far

near − far

0 0 −1 0





























z=-near

z=-far

34

Orthographic Projection Matrix

2

right − left
0 0 −

right + left

right − left

2 top + bottom











Portho(right, left, top,bottom,near, far) =
0

2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

far − near

far + near

far − near

0 0 0 1








 










Portho(width,height,near, far) =

2

width
0 0 0

0
2

height
0 0

0 0
2

far − near

far + near

far − near

0 0 0 1



























35

Viewport Transformation

� After applying projection matrix, scene points are in
normalized viewing coordinates

� Per definition range [-1..1] x [-1..1] x [-1..1]

� Normalized viewing coordinates can be mapped to
image (=pixel=frame buffer) coordinatesimage (=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:

D x0 , x1, y0 , y1()=

x1 − x0() 2 0 0 x0 + x1() 2

0 y1 − y0() 2 0 y0 + y1() 2

0 0 1 2 1 2

0 0 0 1



















36

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Object space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space

37

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Object space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

38

World space

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Object space

World space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

39

World space

Camera space

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Object space

World space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

40

Camera space

Canonical view volume

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Object space

World space

Camera space

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

41

Camera space

Image space

Canonical view volume

The Complete Transform

� Mapping a 3D point in object coordinates to pixel
coordinates:

Pixel coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

42

Pixel coordinates:

The Complete Transform in OpenGL

� Mapping a 3D point in object coordinates to pixel
coordinates:

OpenGL GL_MODELVIEW matrix

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

43

OpenGL GL_PROJECTION matrix

The Complete Transform in OpenGL

� GL_MODELVIEW, C-1M
� Defined by programmer

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume:

glFrustum(), glPerspective(), glOrtho()

� Do not use utility functions in homework project 2� Do not use utility functions in homework project 2

� You will implement a software renderer in project 3, which
will not use OpenGL

� Viewport, D

� Specify implicitly via glViewport()

� No direct access with equivalent to GL_MODELVIEW or
GL_PROJECTION

44

Next Lecture

� Viewport Transformation

� Drawing (Rasterization)

� Visibility (Z-Buffering)

45

