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Announcements

� Homework assignment #4 due Friday, Oct 29

� Office hours this week as usual
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Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures
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Mipmapping Limitations

� Mipmap texels always represent square areas

� Pixel area is not always square in texture space

� Mipmapping tries to balance between aliasing effects 
and a fuzzy image

A circular area in the image plane

can be generated by an ellipse in object space
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Anisotropic Texture Filtering

� Average texture over elliptical area

� Higher quality than trilinear mip-mapping

� More expensive

� Anisotropic filtering in hardware

� Take several bilinear probes approximating the ellipse

� Reduces rendering performance on current GPUs� Reduces rendering performance on current GPUs

� Pre-calculates non-square mipmap textures: e.g., in addition to a 256x256 
pixel mipmap it will store mipmaps of 256x128 pixels, 64x256 pixels, etc.

Texture space

Ellipse of back-

projected pixel

Bilinear

probe
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Example #1
Source:  http://www.garry.tv
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Example #2

Source: http://www.tomshardware.com/reviews/ati,819-5.html
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Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Scene data

Shading

Projection

Rasterization,

visibility

Image
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System Architecture

Interactive Applications

� Games, virtual reality, visualization

Rendering Engine, Scene Graph API

� Implement functionality commonly required in applications� Implement functionality commonly required in applications

� Back-ends for different low-level APIs

Low-level graphics API

� Interface to graphics hardware
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System Architecture

Interactive Applications

� Thousands

Rendering Engine, Scene Graph API

� No broadly accepted standards� No broadly accepted standards

� OpenSceneGraph, OpenSG, NVSG, Java3D, Ogre

Low-level graphics API

� Highly standardized: OpenGL, Direct3D
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Scene Graph APIs

� APIs focus on different clients/applications

� Java3D (https://java3d.dev.java.net/)

� Simple, easy to use, web-based applications

� OpenSceneGraph (www.openscenegraph.org)
� Scientific visualization, virtual reality, GIS (geographic information 
systems)systems)

� NVSG (http://developer.nvidia.com/object/scenix-home.html)
� Optimized for Nvidia graphics cards

� Up-to-date shader support (Cg 2.2)

� Ogre3D (http://www.ogre3d.org/)
� Games, high-performance rendering
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Common Functionality

� Resource management

� Content I/O (geometry, textures, materials, animation sequences)

� Memory management

� High-level scene representation

� Scene graph

� Rendering

� Efficiency
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Lecture Overview

� Texturing

� Anisotropic Texture Filtering

� Scene Graphs & Hierarchies

� Introduction

� Data structures
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Scene Graphs

� Data structure for intuitive construction of 3D scenes

� So far, our GLUT-based projects store a linear list of 
objects

� This approach does not scale to large numbers of objects 
in complex, dynamic scenes
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Sample Scene
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Top View
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Top View With Coordinate Systems
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Hierarchical Organization
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Data Structure

� Requirements

� Collection of individual models/objects

� Organized in groups

� Related via hierarchical transformations

� Use a tree structure� Use a tree structure

� Nodes have associated local coordinates

� Different types of nodes

� Geometry

� Transformations

� Lights

� etc.
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Class Hierarchy

� Many designs possible

� Concepts are the same, details differ

� Design driven by intended application
� Games

� optimized for speed

� Large-scale visualization� Large-scale visualization
� Optimized for memory requirements

� Modeling system
� Optimized for editing flexibility
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Class Hierarchy

Node

� Inspired by Java3D

Group Leaf

TransformGroup Light Shape3D

22



Class Hierarchy

Node

� Access to local-to-world coordinate transform

Group

� List of children

� Get, add, remove child� Get, add, remove child

Leaf

� Node with no children
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Class Hierarchy

TransformGroup

� Stores additional transformation  M

� Transformation applies to subtree below node

� Monitor-to-world transform

World

M0

M1

M2

Table

Plant

Monitor Keyboard24



Class Hierarchy

Subclasses of Leaf

Light

� Stores light sources

Shape3D

� References a geometric object, material� References a geometric object, material
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Scene Graph for Sample Scene
TransformGroup

Shape3D
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Source Code for Sample Scene
WORLD = new Group();

table1Trafo = new TransformGroup(…);  

WORLD.addChild(table1Trafo);

table1 = makeTable(); table1Trafo.addChild(table1);

top1Trafo = new TransformGroup(…); 

table1Trafo.addChild(top1Trafo);

lampTrafo = new TransformGroup(…); top1Trafo.addChild(lampTrafo);

lamp = makeLamp(); lampTrafo.addChild(lamp);lamp = makeLamp(); lampTrafo.addChild(lamp);

book1Trafo = new TransformGroup(…); 

top1Trafo.addChild(book1Trafo);

book1 = makeBook(); book1Trafo.addChild(book1);

� More convenient to construct hierarchical scenes 
than using linear list of objects

� Easier to manipulate
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Modifying the Scene

� Change tree structure

� Add, delete, rearrange nodes

� Change node parameters

� Transformation matrices

� Shape of geometry data

� Materials

� Define specific subclasses

� Animation, triggered by timer events
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Modifying the Scene

� Change a transform in the tree

table1Trafo.setRotationZ(23);

� Table rotates, everything on the table moves with it

� Allows easy animation

� Build scene once at start of program� Build scene once at start of program

� Update parameters to draw each frame

� Allows interactive model manipulation tools

� Add objects relative to parent objects

� E.g., book on table
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Articulated Character

� Separate rigid parts

� Joint angles define transformation matrices

� Hierarchy

� Rooted at torso

� Neck, head subtree Torso� Neck, head subtree

� Arms subtree

� Legs subtree

Torso

Arm/leg 

(4x)

Head
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Parameteric Models

� Parameters for
� Relationship between parts (e.g., joint angles)

� Shape of individual parts (e.g., length of limbs)

� Hierarchical relationship between parts

� Degrees of freedom (DOFs)
� Total number of float parameters in the model� Total number of float parameters in the model
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More Node Types

� Shape nodes
� Cube, sphere, curved surface, etc…

� Nodes that control structure
� Switch/Select: parameters choose whether or which 
children to enable, etc…

� Nodes that define other properties� Nodes that define other properties
� Camera

� Other, application domain dependent nodes:
� Video node

� Terrain node

� Dynamic object node with trajectory, etc.
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Java3D Scene Graph
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Graph Definitions

� Wikipedia:

� “A graph is an abstract representation of a set of objects 
where some pairs of the objects are connected by links.”

� “A tree is a graph in which any two vertices are connected by 
exactly one simple path.”

directed graph � “A directed graph differs from an undirected graph, in that 
the latter is defined in terms of unordered pairs of vertices 
(edges).”

� “A directed acyclic graph (commonly abbreviated to DAG), 
is a directed graph with no directed cycles”
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Scene Graph, Not Tree

� A scene may have many copies of a model

� A model might use several copies of a part

� Multiple Instantiation:

� One copy of node or subtree in memory

� Reference (pointer) inserted as child of many parents

� Not the same as instantiation in C++ terminology� Not the same as instantiation in C++ terminology

� A directed acyclic graph (DAG), not a tree

� Object appears in scene multiple times, with different 
coordinates
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Instantiation

TransformGroup
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Scene Graph, Not Tree

� Saves memory

� May save time, depending on caching/optimization

� Change parameter once, affects all instances

� Can be good or bad, depending on what you want

� Some scene graph designs let other properties inherit from Some scene graph designs let other properties inherit from 
parent
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More Complex Operations

Articulated character

� Shape nodes that compute surface across multiple joint 
nodes

� Nodes that change shape of geometry

� Very popular in gamesVery popular in games
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Basic Rendering

TransformGroup::draw(Matrix4 C) {

C_new = C*M;   // M is a class member

for all children

draw(C_new);

}

� Traverse the tree recursively

Shape3D::draw(Matrix4 C) {

setModelView(C);

setMaterial(myMaterial);

render(myObject);

}
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Basic Rendering

TransformGroup::draw(Matrix4 C) {

C_new = C*M;   // M is a class member

for all children

draw(C_new);

}

� Traverse the tree recursively

Shape3D::draw(Matrix4 C) {

setModelView(C);

setMaterial(myMaterial);

render(myObject);

}

Initiate rendering with
world->draw(IDENTITY);
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Next Lecture

� Scene Graphs & Hierarchies

� Performance Optimization

� Curves
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