Login name Name

Signature Student ID
Final
CSE 131B
Winter 2006
Page 1 (27 points)
Page 2 (25 points)
Page 3 (32 points)
Page 4 (24 points)
Page 5 (38 points)
Page 6 (16 points)
Page 7 (26 points)
Page 8 (14 points)
Subtotal (202 points)
Page 9 (11 points)

Extra Credit

Total

1. Give an example of an implicit type coercion (type conversion without an explicit cast). (3 points each)

Give an example of a converting type cast/conversion (underlying bit pattern needs to be changed).

Give an example of a non-converting type cast/conversion (underlying bit pattern does not change).

Give an example of a type inference rule the compiler will perform.

Give an example of a type equivalence error.

Give an example of an addressability error.

Give an example of an assignability error.

Regarding type checking, value parameters require the actual arguments to be to the

formal parameter type while reference (VAR) parameters require the actual arguments to be

and to the formal parameter type. (2 points each)

2. Given the following Oberon program and expected output, determine whether each parameter is pass-by-
reference or pass-by-value. Fill in the blanks with "VAR" if pass-by-reference, leave it blank if pass-by-value.

(10 pts)

VAR x : | NTEGER;
VAR y : | NTEGER,

PRCCEDURE f 001
BEG N
a =y + 20;

END f oo1;

PROCEDURE f 002
BEG N
a
b
END f 002;

3 *y,;
2 * X;

PROCEDURE f 003
BEG N
a =X Y,
b =x +y;
END f 003;

BEG N
X

y

10;
10;

fool(y);

foo2(x, y);
foo3(x, y);

QUTPUT X,
END.

(__ a : |INTEGER);

(____a: INTEGER, ____ b : INTEGER);

(____a: INTEGER, ____ b : INTEGER);

"L (* should output -10 10 *)

Now in order to get full credit for the above and discourage Jeff Spicoli-like random guesses, what is the output
if each VAR parameter was changed to non-VAR and each non-VAR parameter was changed to VAR? (10 pts)

Give an example of a semantic type error in C/C++ that the compiler will not be able to detect due to separate
compilation. (3 pts)

Since the compiler cannot detect this type of semantic error, where in the entire compilation sequence could this
error be detected? WHY? (2 pts)

3. In your Project 2, how did you (and your partner if you had a partner) implement while loops? There were
several possible implementation options outlined in one of the SPARC Supplement handouts. Be specific how
your project implemented them! (10 points)

Given the following Oberon program and real compiler code gen, fill in the values of the global and local
variables and parameter in the run time environment when the program reaches the label HERE.

memory locations
low memory

TYPE t = RECORD a: | NTEGER, b: BOOLEAN; END;
VAR x : | NTEGER;

PROCEDURE f (VAR i: | NTECER);
VAR a2: ARRAY 3 OF t;
VAR r2: PO NTER TO | NTEGER;
VAR j: | NTEGER; X: 4000
BEG N
NEW(T 2) ;
r2n 1= 420;
az2[0].a :
a2[1].a : ;
a2[2].b : = FALSE;
a2[0].b := TRUE;

] =12
a2[2].a := -19; @Q
a2[1].b := TRUE

7,
18;

8000

(* HERE *)
END;

BEG N
f(x);
END.

20000

\ 4

%fp

s

20100
high memory

4. Describe the main tasks/functions for each part of the C compilation — program execution process:

C Preprocessor ...

1y

2)

C Compiler ...

1) Front end:

2) Back end:

Assembler ...

1y

Linkage Editor ...

1)

2)

Loader ...

1)

2)

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named
foo that is an array of 5 pointers to functions that take a pointer to double as a single parameter and return a
pointer to an array of 8 pointers to struct Fubar. (6 points)

5. Given the following Oberon program, emit the unoptimized SPARC assembly code that should be generated for the
two procedures foo() and main(). Assume no optimizations — treat each instruction separately without any knowledge of
any previously computed/loaded/stored values that may still be in a register from a previous instruction. Draw a line
between each group of assembly language instructions that represent the emitted code generated for each instruction and
label them with the instruction number. All local variables must be allocated and accessed on the Stack (do not map them
directly into local registers). Allocate all global variables in the BSS and access them via their own label/name [like real
compilers do]. Formal parameters may be accessed via the registers in which they are passed. (38 pts)

VAR a, b, ¢ : | NTECGER,

PROCEDURE foo(VAR x : INTEGER y : INTECER) : | NTECER
VAR z : | NTEGER,

BEG N ! allocate global variables here
S,

*
A WNPE
*

.section ".rodata"
*) intFnt: .asciz "% "

+
N
*
o ~NO Ol
*

.global foo, main, a, b, C
.section ".text"

6. A loop in the C family of languages (and others) may contain a break or continue (really just a glorified
goto). Specify the location of the target label of a break branch and the target label of a continue branch in the
SPARC assembly code fragments below by writing the name of the label in the appropriate location.

1=0; 1=0;
while (i<=j) {...if (a==5) break; ... ++i; } while (i<=j) { ... if (a==5) continue; ... ++i; }
| oop: | oop:
! | oop body ! | oop body
cnp %0, 5 cnp %0, 5
be br eakLabel be conti nueLabe
nop nop
! nore | oop body ! nore | oop body
cnp %3, %5 cnp %3, %5
bl e | oop bl e | oop
nop nop

f or loops are equivalent to whi | e loops except when one of the statements in the loop body is a continue
statement. Specify the location of the target label of a continue branch in both a for loop and a while loop in the
SPARC assembly code fragments below by writing the name of the label in the appropriate location.

1=0;
for(i=0;i<=j;++1) {..if (a==5) continue; ... } while (1<=j) {...if (a==5) continue; ... ++i; }
forl oop: whi | el oop:
I | oop body ! | oop body
cnp %0, 5 cnp %0, 5
be conti nuelLabel be conti nueLabe
nop nop
! nore | oop body ! nmore | oop body
inc % 3 inc % 3
cnp %3, %5 cnp %3, %5
ble forloop ble whileloop
nop nop

What is the Unix command used in class to list symbols (name list) from an object file?

What are the two Unix commands on Sun Solaris used in class (1 used in the linker paper) to dissassemble an
object file?

What is the Unix command used in class to print section sizes of an object file?

7. For the following Oberon code, generate the corresponding unoptimized assembly code. Also, take into
account the "Dereference a NIL Pointer" error check before FREEing a pointer, as described in Project II. A
framework of the assembly code is provided for your convenience. (26 points)

(* Qoeron Code *)
TYPE recp = PO NTER TO RECORD
a: ARRAY 5, 5 OF | NTEGER,

END;
VAR X : recp: /* Parti a! SP:IARC Afsen‘ol y */
.section ".bss
BEG N
NEW (X) ;
(* ... *)
FREE (X); X
END. .section ".text"
mai n:
save %p, -96, Ysp
I NEW (x)
nmov 25, %0
nov ,
calt -
nop
set X, I map x into %2
st vl]
/* ... other code */
I FREE (X)
set X, I map x into %2
Id . 1, %0
cnp %0,
bne PtroK
nop
set errorMsg, %0
cal | puts I simlar to printf(string) but safer
nop I avoids format string exploit
call -
nop
Ptrok:
calt -
nop
ret
restore

8. When is a caller-save register convention more efficient than a callee-save register convention? (2 pts)

Assume the compiler generated the following SPARC assembly code. Rewrite it to improve the run time speed
of this code. Do not change the overall algorithm; just perform basic optimization transformations. (10 pts)

.global main
.section ".rodata"

code: .asciz "102"
fnt: .asciz "% = %\ n"

.section ".text"

mai n:
save Y%p, -(92 + 4) & -8, %p I No changes at or above the save instruction
set code, %O
| dub [%60], %1
nmov %90, %2
st W2, [%Bp - 4]
cnp % 1, %0
be .L1
nop
.L2:
Id [%Bp - 4], %2
nmov % 2, %0
nmv 8, %1
cal | . mul
nop
| dub [460], %1
sub % 1, 0x30, %1
add %0, %1, %2
st W2, [%Bp - 4]
inc % 0
| dub [40], %1
cnp % 1, %0
bne .L2
nop
. L1:
set fn, %0
set code, %1
I d [%Bp - 4], %2
cal | printf
nop
ret
restore

Tell me something you learned in this class that is extremely valuable and that you think you will be able to use
for the rest of your programming/computer science career. (2 points if serious; you can add non-serious
comments also)

9. Extra Credit (11 points)

What gets printed by the following C program?

#i ncl ude <stdi o. h>

i nt

mai n()

{
char a[] = "Me? | want to go";
char b[] = "to Porter's Pub";
char c[] = "and don't you, too?";

char *ptr = a;

printf("%\n", *(ptr + 4));

printf("%\n", *(ptr = b + 3));

printf("%\n", toupper(*(b + strlen(b) - 1)) — 1);
printf("%\n", c[strlen(b)-5]);

printf("%\n", ptr[10]);

printf("%\n", tolower(*a));

return O;

}

Given the following ANSI/ISO C variable definitions, identify which expressions will produce a static semantic
compiler error. Hint: Think modifiable 1-value. A) No compiler error
B) Compiler error

float f
int *iPt
float *fPt

int i = 65;
r

++((float *) iPtr);
i = *(int *)fPtr;
fPtr = &(i + f);

iPtr = *(int **)& Ptr;

Crossword Puzzle (next page)

Scratch Paper

10

Scratch Paper

11

