
Login name _________________ Quiz 3 Name ______________________
CSE 131B

Signature ___________________ Spring 2005 Student ID __________________

1. Given the array declaration
 C Oberon-like
 int a[7]; VAR a : ARRAY 7 OF INTEGER;

Mark with an A the memory locations where we would find

 a[4]
a:

low memory high memory

2. Show the memory layout of the following C struct/record definition taking into consideration the SPARC
data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate
struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.
For example, some number of p0s, p1s, p2s, etc. Place an X in any bytes of padding. Structs and unions are
padded so the total size is evenly divisible by the most strict alignment requirement of its members.

struct foo { low memory
 short a; fubar:
 char b[3];
 double c[2];
 char d;
 short e;
 char f;
};

struct foo fubar;

 high memory
What is the offsetof(struct foo, e)? ________

What is the sizeof(struct foo)? ________

If struct foo had been defined as union foo instead, what would be the sizeof(union foo)? _______

3. Some languages (like C++) allow the programmer to define local block-scoped variables anywhere in a block
and that variable name is scoped to that block from that point on to the end of the block. Needless to say, this
complicates the compiler's scoping (intra-block local scope STO inserts) and type checking mechanisms and the
ability to perform certain code improvements.

Consider the following valid C++ program fragment:

int main(char *argv[], int argc)
{
 int i = 2;

 while (i == 2)
 {
 i++;
 double i = 2.2;
 i++;
 if (i > 2)
 {
 cout << i << " "; // Output the current value of i followed by a space
 i--;
 char i = '2';
 i--;
 cout << i << " "; // Output the current value of i followed by a space
 i++;
 }
 i--;
 cout << i << " "; // Output the current value of i followed by a space
 i--;
 }
 i--;
 cout << i << endl; // Output the current value of i followed by a newline

 return 0;
}

What gets printed? _________________________________

4. Why is the use of a traversal pointer to cycle through all the elements of a C/C++ multidimensional array
almost always more efficient than using standard array indexing?

What question would you most like to see on the Midterm?

