
 0

Login name _________________ Name ______________________

Signature ___________________ Student ID __________________

 Final
 CSE 131B
 Spring 2004

Page 1 ___________ (25 points)

Page 2 ___________ (24 points)

Page 3 ___________ (32 points)

Page 4 ___________ (24 points)

Page 5 ___________ (28 points)

Page 6 ___________ (26 points)

Page 7 ___________ (22 points)

Page 8 ___________ (23 points)

Subtotal ___________(204 points)

Page 9 ___________ (10 points)
Extra Credit

Total ___________

 1

1a. Consider the following C/C++ program:

#include <stdio.h>

int main()
{
 int y = 1;
 int x[5];
 int i;

 for (i = 0; i <= 5; ++i)
 x[i] = i;

 printf("%d\n", y); /* Print the value of y */
 printf("%p\n", &y); /* Print the address of y */

 return 0;
}

Explain why the first printf() statement prints the value 5 when compiled with some compiler on some
architecture (it does on SPARC with cc and CC)? (5 points)

Explain why the first printf() statement prints the value 1 when compiled with the same compiler on the same
architecture as above but with the second printf() statement removed? (5 points)

1b. C/C++ structs are assignable only if they are equivalent types. Two structs that are not equivalent cannot be
assigned even with a cast. Why? (5 points)

How can you get around this limitation? Give a specific example. (5 points)

Why is this OKAY? (5 points) [Hint: Discuss types of equivalence used in your answers]

 2

2. The following C function is one way to calculate whether a year is a leap year. In particular, it uses several
constructs that were part of Project 2 Code Generation: if-else conditional, modulus operator, boolean
expressions containing equality checks, and logical AND and OR expressions with short-circuiting. Using your
hard-earned code generation talents from Project 2, translate this into SPARC assembly. Nothing fancy, no
optimizations, just perform a direct translation keeping in mind short-circuiting semantics. (20 points)

int
leapyear(unsigned int year)
{
 if ((year % 400 == 0) || ((year % 4 == 0) && (year % 100 != 0)))
 return 1;
 else
 return 0;
}

Given the array declaration
 C Oberon-like
 int a[3][2]; VAR a : ARRAY 3, 2 OF INTEGER

Mark with an A the memory locations where we would find (4 points)

 a[2][0] a[2,0]
a:

low memory high memory

 3

3. Why is passing and returning references or pointers to structs/objects as arguments and return values usually
recommended over passing/returning structs/objects by value in most languages? (4 points)

What gets printed? (28 points)

VAR x : INTEGER;
VAR y : BOOLEAN;

PROCEDURE foo1(a : BOOLEAN; VAR b : INTEGER) : INTEGER;
 VAR i : INTEGER;
 VAR j : BOOLEAN;
BEGIN
 i := b;
 b := 77;
 j := a;
 a := FALSE;

 OUTPUT x, " ", y; ____________

 OUTPUT a, " ", b; ____________

 OUTPUT i, " ", j; ____________

 RETURN i;
END foo1;

PROCEDURE foo(a : INTEGER; VAR b : BOOLEAN);
 VAR i, j : INTEGER;
BEGIN
 i := a;
 a := 66;
 j := foo1(b, a);
 b := TRUE;

 OUTPUT x, " ", y; ____________

 OUTPUT a, " ", b; ____________

 OUTPUT i, " ", j; ____________
END foo;

BEGIN
 x := 55;
 y := FALSE;

 foo(x, y);

 OUTPUT x, " ", y; ____________
END.

 4

4. Identify where each of the following program parts live in the Java runtime environment as discussed in
class. (12 points)

public class Foo {
 private static Foo a; a _________________

 private int b; b _________________

 public Foo() { Foo() _________________

 a = this; this _________________
 ++b;
 }
 main() _________________

 public static void main(String[] args) { args _________________

 Foo c = new Foo(); c _________________

 int d; d _________________

 c = new Foo(); where c is pointing _________________
 c.method(d);
 }
 method() _________________

 private void method(int e) { e _________________

 int f; f _________________
 f = e;
 }
}

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named
foo that is a pointer to an array of 9 elements where each element is a pointer to a function that takes a pointer to
a struct Pub as the single parameter and returns a pointer to a 7x19 2-D array where each element is a pointer to
a struct Fubar. (6 points)

Regarding type checking, reference (VAR) parameters require the actual arguments to be __________________

and ____________________ to the formal parameter type while value parameters require the actual arguments

to be ___________________ to the formal parameter type. (6 points)

 5

5. Given the following program, order the printf() lines so that the values that are printed when run on a Sun
SPARC Unix system are displayed from smallest value to largest value and label the corresponding C/C++
Runtime area. (20 points)

void foo(int, int *); /* Function Prototype */

int a;

int main(int argc, char *argv[]) { smallest value Runtime
 (low memory) Area
 static int b = 420;
 int c = 404; ___________ ___________

 foo(argc, &c); ___________ ___________

/* 1 */ (void) printf("a --> %p\n", &a); ___________ ___________
/* 2 */ (void) printf("b --> %p\n", &b);
/* 3 */ (void) printf("c --> %p\n", &c); ___________ ___________
/* 4 */ (void) printf("argc --> %p\n", &argc);
/* 5 */ (void) printf("malloc --> %p\n", malloc(50)); ___________ ___________
/* 6 */ (void) printf("foo --> %p\n", foo);
} ___________ ___________

void foo(int d, int *e) { ___________ ___________

 int f = 911; ___________ ___________
 int g;
 ___________ ___________
/* 7 */ (void) printf("d --> %p\n", &d);
/* 8 */ (void) printf("e --> %p\n", &e); ___________ ___________
/* 9 */ (void) printf("f --> %p\n", &f);
/* 10 */ (void) printf("g --> %p\n", &g); largest value
} (high memory)

Why do compilers typically allocate space for arguments in the Runtime Stack even when they pass them in
registers? (4 points)

Object-oriented languages allow operator, function, and constructor overloading. In these languages, the
function name is not always a unique identifier, since you can have multiple related definitions. For lookup
purposes, the compiler must construct a distinct identifier for each function. Sometimes, such overloaded
functions will have different return types as well. How would you create distinct identifiers for such functions?
(4 points)

 6

6. Given the following Oberon program, emit the unoptimized SPARC assembly language code that should be
generated for the two procedures foo1() and foo(). Assume no optimizations – treat each instruction separately
without any knowledge of any previously computed/loaded/stored values that may still be in a register from a
previous instruction. Draw a line between each group of assembly language instructions that represent the
emitted code generated for each instruction and label them with the instruction number. All local variables must
be allocated and accessed on the Stack (do not map them directly into a local register). (26 points)

PROCEDURE foo1(VAR x : INTEGER; VAR y : INTEGER) : INTEGER;
 VAR i, j : INTEGER; (**** Local Stack variables – Do not initialize to zero ****)
BEGIN
 j := y + 5; (* 1 *)
 i := x; (* 2 *)
 y := j - 10; (* 3 *)
 RETURN x; (* 4 *)
END foo1;

PROCEDURE foo(a : INTEGER; VAR b : INTEGER);
 VAR i, j : INTEGER; (**** Local Stack variables – Do not initialize to zero ****)
BEGIN
 i := foo1(a, b); (* 5 *)
 b := foo1(i, j); (* 6 *) (* Don't worry about any local variables not initialized *)
END foo;

BEGIN
 (* ... *)
END.
 .global foo, foo1, main

 .section ".text"
foo1: foo:

 7

7. Show the memory layout of the following C struct/record definition taking into consideration the SPARC
data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate
struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.
For example, some number of p0's, p1's, p2's, etc. Place an X in any bytes of padding. Structs are padded so
the total size is evenly divisible by the most strict alignment requirement of its members. (11 points)

struct foo { low memory
 char a; fubar:
 short b;
 double c;
 short d[3];
 int e;
}

struct foo fubar;

Generate SPARC assembly code for the 3 labeled statements below. Assume the two local variables have been
allocated on the Stack with an appropriate save instruction. Draw a line between and label the group of
translated instructions for each labeled line. (11 points)

PROCEDURE P();
 VAR i : INTEGER;
 VAR ptr : POINTER TO INTEGER;
BEGIN
 NEW(ptr); (* 1 *)

 ptr^ := 420; (* 2 *)

 i := ptr^; (* 3 *)
END P;

BEGIN
END.

 8

8. Give the order of the phases of compilation in a typical compiler as discussed in class (8 points)

 A – Machine-specific code improvement (optional) B – Scanner (lexical analysis)
 C – Parser (Semantic analysis/intermediate code gen.) D – Parser (syntax analysis)
 E – Machine-independent code improvement (optional) F – Target code generation
 G – Source language (for example, C) H – Target language (for ex., assembly)

______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______

Give the order of the typical C compilation stages and on to actual execution as discussed in class (8 points)

 B – loader G – cpp (C preprocessor)
 D – ld (Linkage Editor) E – as (assember)
 C – exe/a.out (executable image) H – Source file
 F – ccomp (C compiler) A – Program Execution

gcc ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______

How did you implement the OUTPUT function in your Project 2? (5000 points)

Tell me something you learned in this class that is extremely valuable and that you think you will be able to use
for the rest of your programming/computer science career. (2 points)

 9

9. Extra Credit (10 points)

Given the following ANSI/ISO C/C++ variable definitions, identify which expressions will produce a static
semantic compiler error. A) No compiler error
 B) Compiler error
int
main()
{
 char * s = "CSE 131B Rocks!";

 char * p1 = &s[4];
 const char * p2 = s;
 char * const p3 = s + 7;
 const char * const p4 = &*(s + 9);

 p1 = s; ______

 *p1 = 'A'; ______

 p2 = s; ______

 *p2 = 'A'; ______

 p3 = s; ______

 *p3 = 'A'; ______

 p4 = s; ______

 *p4 = 'A'; ______

 *&p1[9] = *(s + 1); ______

 ((char *) p4) = (char *) p3; ______

}

Note: cc, CC, and g++ report these as errors; gcc reports these as warnings! :-/

 10

Scratch Paper

 11

Scratch Paper

