
 0

Signature ___________________ Name ______________________

Login Name _________________ Student ID __________________

 Midterm

 CSE 131

 Winter 2009

Page 1 ___________ (25 points)

Page 2 ___________ (21 points)

Page 3 ___________ (22 points)

Page 4 ___________ (21 points)

Page 5 ___________ (14 points)

Page 6 ___________ (15 points)

Subtotal ___________(118 points)

Page 6 ___________ (7 points)

Extra Credit

Total ___________

 1

1. Given the following CUP grammar snippet (assuming all other Lexing and terminals are correct): (7 pts)

Stmt ::= Designator T_ASSIGN Expr T_SEMI
 {: System.out.println("A"); :}
 ;

Expr ::= Expr MulOp {: System.out.println("B"); :} Designator
 | Designator {: System.out.println("C"); :}
 ;

Designator ::= T_ID {: System.out.println("D"); :}
 ;

MulOp ::= T_STAR {: System.out.println("E"); :}
 ;

What is the output on the screen when the follow statement is given as input:

a = b * c;

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named

foo that is a 2-d array of 3 rows by 5 columns where each element is a pointer to an array of 7 elements where

each element is a pointer to a function that takes a pointer to a pointer to a float as a single parameter and

returns a pointer to an array of 9 elements where each element is a pointer to a struct bar. (10 pts)

State whether constant folding can be performed by the compiler according to this quarter's Reduced-C spec in

the following Reduced-C statements (Y or N) (8 pts)

function : void foo()
{
 const int a = 5;
 int b = 17;

 const int c = a + 10; ______

 int[3 + c] d; ______

 d[13 + (a * b)] = c; ______

 b = d[d[2] + c]; ______

 int e = d[a + c]; ______

 e = d[13 + b]; ______

 e = d[e + a]; ______

 d[5 - 2 + c] = e; ______
}

 2

2. Given the following Reduced-C program and following the Project I spec for parameter passing type

checking, for each function call determine if a semantic error will occur (and which kind of error). (21 pts)

A. No Error

B. Equivalence Error

C. Addressability Error

D. Assignability Error

function : void foo0 (float[5] & x) { /* ... */ }
function : void foo1 (float * & x) { /* ... */ }
function : void foo2 (int x) { /* ... */ }
function : void foo3 (float & x) { /* ... */ }
function : void foo4 (float x) { /* ... */ }
function : void foo5 (float * x) { /* ... */ }

function : void main()
{
 float a;
 int b;
 int[5] c;
 float[5] d;
 float * e;

 foo0(c); _____

 foo0(d); _____

 foo1(e); _____

 foo1(&a); _____

 foo1((float *) &b); _____

 foo2(a); _____

 foo2(b); _____

 foo3(b); _____

 foo3(a); _____

 foo3(e); _____

 foo3(*&a); _____

 foo3(a + b); _____

 foo4(e); _____

 foo4(b); _____

 foo4(a); _____

 foo5(&b); _____

 foo5((float *) &b); _____

 foo5(&a); _____

 foo5(c); _____

 foo5(d); _____

 foo5(e); _____
}

 3

3. The types in Reduced-C variable definitions are often unnecessary in the sense that it may be possible to infer

variables' types and detect type errors simply from their use. For each of the following program fragments, find

a set of types that makes it legal, and write a Reduced-C definition for each variable. If there is more than one

possible type, choose only one. If there is none, write "NONE". Assume all arrays are of size 4. (2 pts each)

 if (a && (b != c))
 a = b;

______________________ a ;

______________________ b ;

______________________ c ;

 b = (*a)[b];

______________________ /* a requires two lines of Reduced-C */

______________________ a ; /* to properly define it */

______________________ b ;

 a = 5.5;

 if(d != b)
 d = (c % b) / a;

______________________ a ;

______________________ b ;

______________________ c ;

______________________ d ;

What is an advantage of defining multi-dimensional arrays as contiguous memory locations as opposed to

allocating the equivalent as arrays of arrays in C/C++, especially when needing to access each array element in

order.

 4

struct foo {
 int a;
 double b;
 struct foo *c[3];
 char d[4];
};

struct foo {
 int a;
 double b;
 struct foo c;
 char d[4];
};

struct foo {
 int a;
 double b;
 struct foo c[2];
 char d[4];
};

4. Consider the following struct definitions. Specify the size of each struct on a typical RISC architecture (like

ieng9) or 0 if it is an illegal definition. (6 pts)

 Size _______ Size _______ Size _______

Using Reduced-C syntax, define an array of array of int named foo with dimensions 7 x 13 (7 rows, 13 cols)

such that foo[6][12] is a valid index expression. This will take two lines of code. (4 pts)

Assume the following Reduced-C definitions are correct: (8 pts)

structdef RECA
{
 int * ptr;
};

structdef RECB
{
 RECA * ptr;
};

RECB * ptr;

a) What type is ptr->ptr ? ____________________________________

b) What type is *(ptr->ptr->ptr) ? ____________________________________

c) What type is *(ptr->ptr) ? ____________________________________

d) What type is (*(*ptr).ptr).ptr ? ____________________________________

From our Reduced-C spec, name a construct which uses (3 pts)

 loose name equivalence ________________

 strict name equivalence ________________

 structural equivalence _________________

 5

5. According to this quarter's Reduced-C grammar, what two constructs must be uppercase symbols?

 ____________________ ___________________

Given the following CUP grammar rules

Expr1 ::= Expr1 T_OP1 Expr2
 | Expr2
 ;

Expr2 ::= Expr3 T_OP2 Expr2
 | Expr3
 ;

Which operator has higher precedence (OP1 or OP2)? _______

What is the associativity of the OP1? _________________

What is the associativity of the OP2? _________________

According to the Project 1 spec, the address-of operator requires its operand to be ______________________

and the result of this expression is not ____________________ and not _____________________, or in other

words the result is a(n) ____________________________ (what is the proper term).

According to the Project 1 spec, what is the compile-time size of the following in this Reduced-C program?

structdef REC { int a, b; float c; };

int[4] a;
REC b;

int x;

function : void foo(int[4] & p1, REC * p2) {

 x = sizeof(p1); // should be ________

 x = sizeof(p2); // should be ________
}

function : void main() {

 x = sizeof(b); // should be ________

 x = sizeof(a); // should be ________

 foo(a, &b);
}

In a call to a struct member function like

 structPtr->foo();

what does the this keyword in the function foo() refer to? Be specific using the above expression.

 6

6. Show the memory layout of the following C struct/record definition taking into consideration the SPARC

data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate

struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.

For example, some number of p[0]s, p[1]s, p[2]s, etc. If the member/field is a struct, use the member

name followed by it's member names (e.g. p.a, p.b). Place an X in any bytes of padding. Structs and unions are
padded so the total size is evenly divisible by the most strict alignment requirement of its members.

 low memory
 fubaz:

 high memory

What is the offsetof(struct fubar, g.b)? ________

What is the sizeof(struct fubar)? ________

What is the resulting type of the following expression (pure beauty)?

 * (char *) & (((struct foo *) & fubaz) -> b) _______________________________

Write the equivalent expression that directly accesses this value/memory location without all the fancy

casting/operators.

 fubaz.________________

struct foo {
 short a;
 double b;
 char c;
};

struct fubar {
 float d;
 int e;
 char f[5];
 struct foo g;
 short h;
};

struct fubar fubaz;

 7

Extra Credit (7 points)

What gets printed when the following C program is executed?

#include <stdio.h>

int
main()
{
 char a[] = "CSE030 Rolls!";
 char *p = a + 2;

 printf("%c", *p++); ______

 printf("%c", ++*p); ______

 printf("%c", ++p[2]); ______

 p = p + 4;

 printf("%c", *++p = a[11] + 2); ______

 p++;

 printf("%c", a[10] = *++p - 7); ______

 printf("%d", p - a); ______

 printf("\n%s\n", a); _________________

 return 0;
}

A portion of the Operator Precedence Table

Operator Associativity

++ postfix increment L to R
-- postfix decrement

* indirection R to L
++ prefix increment
-- prefix decrement
& address-of

* multiplication L to R
/ division
% modulus

+ addition L to R
- subtraction

 .
 .
 .

= assignment R to L

 8

Scratch Paper

 9

Scratch Paper

