
 0

Login name _________________ Name ______________________

Signature ___________________ Student ID __________________

 Final
 CSE 131B
 Spring 2005

Page 1 ___________ (27 points)

Page 2 ___________ (24 points)

Page 3 ___________ (32 points)

Page 4 ___________ (24 points)

Page 5 ___________ (32 points)

Page 6 ___________ (26 points)

Page 7 ___________ (31 points)

Page 8 ___________ (20 points)

Subtotal ___________(216 points)

Page 9 ___________ (11 points)
Extra Credit

Total ___________

 1

1 Consider the following C++ function:

int fubar(int a)
{
 static int y = a;

 // Other possible code not relevant to this question

 return y;
}

Generate unoptimized SPARC assembly code for this function taking into consideration the semantics involved
with the C++ language allowing static variables to be initialized at run time as discussed in class. (24 points)

Regarding the C++ function above: How does the compiler differentiate between the static variable y in
function fubar() and a global variable named y or another static variable named y defined elsewhere in separate
source files that may be part of the overall resulting program and keep their scope/visibility semantically
correct? Be specific. Be sure to incorporate this into your code generation above. (3 points)

2. Given the following Oberon program and expected output, determine whether each parameter is pass-by-
reference or pass-by-value. Fill in the blanks with "VAR" if pass-by-reference, leave it blank if pass-by-value.

VAR x : INTEGER;
VAR y : INTEGER;

PROCEDURE foo1 (____ a : INTEGER);
BEGIN
 a = y + 30;
END foo1;

PROCEDURE foo2 (____ a : INTEGER, ____ b : INTEGER);
BEGIN
 a = 2 * y;
 b = 3 * x;
END foo2;

PROCEDURE foo3 (____ a : INTEGER, ____ b : INTEGER);
BEGIN
 a = x + y;
 b = x - y;
END foo3;

BEGIN
 x = 10;
 y = 10;

 foo1(y);
 foo2(x, y);
 foo3(x, y);

 OUTPUT x, " ", y; (* should output 80 60 *)
END.

Now in order to get full credit for the above and discourage Jeff Spicoli-like random guesses, what is the output
if each VAR parameter was changed to non-VAR and each non-VAR parameter was changed to VAR?

You may use the space below as a scratch pad area to help figure out the correct parameter passing modes.

 2

3. In your Project 2, how did you (and your partner if you had a partner) implement global variables? There
were several possible implementation options discussed. Be specific how your project implemented them!
(10 points)

Given the following Oberon program, fill in the values of the global and local variables and parameter in the run
time environment when the program reaches the label HERE. memory locations
 low memory
 TYPE t = RECORD a: INTEGER; b: BOOLEAN; END;

 3

 VAR x : INTEGER;

 PROCEDURE f(VAR i: INTEGER);
 VAR j: INTEGER;
 VAR r2: POINTER TO INTEGER;
 VAR a2: ARRAY 3 OF t;
 BEGIN
 NEW(r2);
 r2^ := 95;
 j := 17;
 a2[0].a := 5;
 a2[1].a := 13;
 a2[2].b := FALSE;
 a2[0].b := TRUE;
 a2[2].a := -28;
 a2[1].b := TRUE;

 (* HERE *)
 END;

 BEGIN
 f(x);
 END.

 high memory

x: 4000

.

.

.

.

.

.

Heap

8000

.

.

.

...

%fp

20000

20100

4. Identify where each of the following program parts live in the Java runtime environment as discussed in
class. (12 points)

public class Foo {
 private static Foo a; a _________________

 private int b; b _________________

 public Foo() { Foo() _________________

 a = this; this _________________
 ++b;
 }
 main() _________________

 public static void main(String[] args) { args _________________

 Foo c = new Foo(); c _________________

 int d; d _________________

 c = new Foo(); where c is pointing _________________
 c.method(d);
 }
 method() _________________

 private void method(int e) { e _________________

 int f; f _________________
 f = e;
 }
}

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named
foo that is a pointer to a pointer to a function that takes a pointer to a struct Fubar as the single parameter and
returns a pointer to a 4x7 2-D array where each element is a pointer to an array of 8 doubles. (6 points)

What is an advantage of storing multi-dimensional arrays as contiguous memory locations as opposed to arrays
of arrays in C/C++? (3 points)

What is an advantage of storing multi-dimensional arrays as arrays of arrays as opposed to contiguous memory
locations in C/C++? (3 points)

 4

5. Given the following C program, order the printf() line numbers so that the values that are printed when run
on a Sun SPARC Unix system are displayed from smallest value to largest value (note the address of the
different program parts are printed, not their value). Also specify the corresponding C Run Time area where
each program part will be allocated. (22 points)

void foo(int *, int); /* Function Prototype */

int a = 420; Line that
 prints the
int main(int argc, char *argv[]) smallest value Run Time
{ (low memory) Area

 int b = 420; ___________ a ___________

 foo(&argc, b); ___________ b ___________

/* 1 */ (void) printf("a --> %p\n", &a); ___________ c ___________
/* 2 */ (void) printf("b --> %p\n", &b);
/* 3 */ (void) printf("argc --> %p\n", &argc); ___________ d ___________
/* 4 */ (void) printf("argv --> %p\n", &argv);
/* 5 */ (void) printf("malloc --> %p\n", malloc(75)); ___________ e ___________
/* 6 */ (void) printf("foo --> %p\n", foo);
} ___________ f ___________

void foo(int *c, int d) { ___________ g ___________

 int e = 404; ___________ foo ___________
 static int f;
 int g; ___________ argv ___________

/* 7 */ (void) printf("c --> %p\n", &c); ___________ malloc ___________
/* 8 */ (void) printf("d --> %p\n", &d);
/* 9 */ (void) printf("e --> %p\n", &e); ___________ argc ___________
/* 10 */ (void) printf("f --> %p\n", &f);
/* 11 */ (void) printf("g --> %p\n", &g); Line that
} prints the
 largest value
 (high memory)

List the two main tasks/functions of the linkage editor as discussed in class? (6 points)

1)

2)

How does the this reference (in Java) or the this pointer (in C++) become available/accessible in a method?
(4 points)

 5

6. Given the following Oberon program, emit the unoptimized SPARC assembly language code that should be
generated for the two procedures foo() and foo1(). Assume no optimizations – treat each instruction separately
without any knowledge of any previously computed/loaded/stored values that may still be in a register from a
previous instruction. Draw a line between each group of assembly language instructions that represent the
emitted code generated for each instruction and label them with the instruction number. All local variables must
be allocated and accessed on the Stack (do not map them directly into a local register). (26 points)

PROCEDURE foo(a : INTEGER; VAR b : INTEGER) : INTEGER;
 VAR i : ARRAY 2 OF INTEGER; (**** Local Stack variables – Do not initialize to zero ****)
BEGIN
 a := i[1] * 5; (* 1 *)
 b := a + 10; (* 2 *)
 i[0] := b; (* 3 *)
 RETURN b; (* 4 *)
END foo1;

PROCEDURE foo1(VAR a : INTEGER; VAR b : INTEGER);
 VAR i, j : INTEGER; (**** Local Stack variables – Do not initialize to zero ****)
BEGIN
 j := foo(i, b); (* 5 *)
 a := foo(a, j); (* 6 *) (* Don't worry about any local variables not initialized *)
END foo;

BEGIN
 (* ... *)
END.
 .global foo, foo1, main

 .section ".text"
foo: foo1:

 6

7. Show the memory layout of the following C struct/record definition taking into consideration the SPARC
data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate
struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.
For example, some number of p0's, p1's, p2's, etc. Place an X in any bytes of padding. Structs are padded so
the total size is evenly divisible by the most strict alignment requirement of its members. (11 points)

struct foo { low memory
 short a[3]; fubar:
 int b;
 double c;
 char d;
 short e;
}

struct foo fubar;

Generate SPARC assembly code for the C function below. (20 points)

 C SPARC
void foo(int i)
{
 while (i < 20)
 {
 printf("%d\n", i);
 ++i;
 }
}

 7

 8

8. Consider a typical if-then-else statement that will be executed many times such as being embedded in a loop.
Is it more efficient to structure the condition so the statements you know will most likely to be executed are in
the if/true block or the else/false block? Why? (8 points)

if (condition)
{
 if/true block
}
else
{
 else/false block
}

Perform loop improvements on the following C code fragment so the loop should execute more efficiently even
without any compiler optimization. (10 points)
 Code improved version here

int i; int i;
char str[] = "e_superstore = color"; char str[] = "e_superstore = color";

 /* other code */ /* Modifications from this point down */

for (i = 1; (i – 1) < strlen(str); i = i * 2)
{
 str[i-1] = toupper(str[i-1]);
}

Tell me something you learned in this class that is extremely valuable and that you think you will be able to use
for the rest of your programming/computer science career. (2 points if serious; you can add non-serious
comments also)

 9

9. Extra Credit (11 points)

What gets printed by the following C program?

#include <stdio.h>

int
main()
{
 char a[] = "End this, Please!";
 char *ptr = &a[6];

 printf("%c\n", *ptr++); _____

 printf("%c\n", *(ptr = ptr + 3)); _____

 printf("%c\n", ptr[2]); _____

 printf("%c\n", a[strlen(a)-2]); _____

 printf("%c\n", (*(a+7))-3); _____
 ptr = &a[8];
 printf("%c\n", *--ptr); _____

 return 0;
}

Given the following ANSI/ISO C variable definitions, identify which expressions will produce a static semantic
compiler error. Hint: Think modifiable l-value. A) No compiler error
 B) Compiler error
 int i = 5;
 float f = 1.5;
 int *iPtr = &i;
 float *fPtr = &f;

 fPtr = &(i + f); ______

 ++((float *) iPtr); ______

 i = *(int *)fPtr; ______

 iPtr = *(int **)&fPtr; ______

Crossword Puzzle (next page)

 10

Scratch Paper

 11

Scratch Paper

