
Login name _________________ Quiz 2 Name ______________________ 
CSE 131B 

Signature ___________________ Winter 2006 Student ID __________________ 
 
1. Semantic Analysis and Separate Compilation.  Consider the following two C program files: 
 
/* file1.c */ /* file2.c */ 
#include <stdio.h> #include <stdio.h> 
extern int a; extern int x; 
extern int foo( int z ); 
static int x = 420; float a = 4.20; 
 
int main( int argc, char *argv[] ) { void foo( int y ) { 
   int i = a;    static int b = 25; 
 
   for ( i = 0; i < a; ++i )    ++b; 
      (void) printf( "%d ", foo( i ) );    (void) printf( "%d ", b ); 
   return 0;    (void) printf( "%d ", x ); 
} } 
 
Trying to separately compile each file and then link the resulting object modules 
 gcc –c file1.c  file1.c –> cpp –> ccomp –> as –> file1.o 
 gcc –c file2.c  file2.c –> cpp –> ccomp –> as –> file2.o 
 gcc file1.o file2.o file1.o & file2.o –> ld –> a.out/.exe 
 
results in just one error being reported. We discussed some of the problems/complications imposed on the 
compiler to be able to perform static semantic type checking with separate compilation. 
 
What error will be reported (specify the symbol name and a general description of what the problem is). Hint: 
The error will be reported in the 3rd gcc call which attempts to link the already compiled and assembled object 
modules.  Hint Hint: Think scope. 
 
 
 
 
 
Assuming we fixed this error so the program will fully compile/link. How many times does the variable b in 
function foo() get initialized? 
 
 
 
Can we change the initialization of b in file2.c to be  static int b = y;  Why or why not? 
 
 
 
 
Identify two other potential semantic errors in this program that the C compiler and linker did not detect, but lint 
will identify. 
1) 
 
 
2) 



2. Type Inference.  Consider the following Oberon program: 
 
CONST a = 5 _Op1_ 7;  
CONST b = 5 _Op2_ 7;  
CONST c = TRUE _Op3_ FALSE;  
VAR x : INTEGER;  
VAR z : BOOLEAN;  
BEGIN  
  IF ( a ) THEN RETURN;  
  END;  
  x := b;  
  z := c;  
END.  
 
For _Op1_, _Op2_, and _Op3_, list what operators are valid (i.e., cause no errors). The available operators are 
listed below. Two ops have two possible operators; one op just one.  
  +   OR   #   <= 
 
_Op1_: ____________________________  
 
_Op2_: ____________________________  
 
_Op3_: ____________________________ 
 
3. Constant Folding.  For each of the blanks in the program below, if compile time constant folding can be 
done for the expression, write the result of the constant folding (i.e. the value -420); write "no" if constant 
folding cannot be done statically by the compiler. 
 
VAR x : INTEGER; 
VAR y : INTEGER; 
VAR z : INTEGER; 
 
CONST a = 5; 
CONST b = a + 5; 
CONST c = a + b; 
 
PROCEDURE foo (x : INTEGER); 
VAR a, b : INTEGER; 
BEGIN 
    a := 10; 
 
    z := 1 + 2;               ______ 
    z := x + 2;               ______ 
    z := a + b;               ______ 
    z := x + y;               ______ 
    z := b + c;               ______ 
END foo; 
 
BEGIN 
    x := 4; y := 5; 
 
    z := 1 + 2;               ______ 
    z := x + 2;               ______ 
    z := a + b;               ______ 
    z := c + y;               ______ 
    z := b + c;               ______ 
 
    foo(420); 
END. 
 


