
Login name _________________ Quiz 3 Name ______________________
CSE 131B

Signature ___________________ Spring 2004 Student ID __________________

1. Given the array declaration
 C Oberon-like
 short a[11]; VAR a : ARRAY 11 OF SHORTINT;

Mark with an A the memory location where we would find

 a[7]
a:

low memory high memory

2. Show the memory layout of the following C struct/record definition taking into consideration the SPARC
data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate
struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.
For example, some number of p0's, p1's, p2's, etc. Place an X in any bytes of padding. Structs are padded so
the total size is evenly divisible by the most strict alignment requirement of its members.

struct foo { low memory
 char a; fubar:
 short b[2];
 char c[3];
 int d;
 double e;
 float f;
}

struct foo fubar;

 high memory
What is the offsetof(struct foo, d)?

What is the sizeof(struct foo)?

3. Some languages (like C++) allow the programmer can define local variables anywhere in a block and that
variable name is scoped to that block from that point on to the end of the block. Needless to say, this
complicates the compiler's scoping and type checking mechanisms.

Consider the following valid C++ program fragment:

int main(char *argv[], int argc)
{
 int i = 2;

 while (i == 2)
 {
 i--;
 int i = 2;
 i++;
 if (i > 2)
 {
 i--;
 int i = 2;
 i++;
 cout << i << " "; // Output the current value of i followed by a space
 }
 cout << i << " "; // Output the current value of i followed by a space
 }
 cout << i << endl; // Output the current value of i followed by a newline

 return 0;
}

What gets printed? _______________________

4. Indicate whether the following expressions are
 A. legal (no compiler error) or
 B. illegal (compiler error).

 int a[10];
 int *iPtr;

 &a[4] = iPtr; ______ iPtr = &a[4]; ______

 *(iPtr - 3) = a[3]; ______ *&a[3] = *iPtr; ______

 &a = iPtr + 420; ______ *(a+2) = 2[iPtr]; ______

What question would you most like to see on the Midterm?

