
1

CSE 131 – Compiler Construction

Discussion 6: Operations, Branches

and Functions

02/16/2010

02/19/2010

Overview

� Phase 1

� Some Phase 2

Phase 1 –Arithmetic Expressions

� Given:
int x; // Global, static, or extern variable

x = x + 7;

set x, %l0

ld [%l0], %l0
set 7, %l1

add %l0, %l1, %l1
st %l1, [%fp-4] ! tmp allocated on stack
ld [%fp-4], %l1

set x, %l0
st %l1, [%l0]

� Note: the assembly is the same regardless of
whether x is declared global, static, or extern!

Arithmetic Expressions

� OK, that’s easy for a simple statement.

� What if we had a statement like this:

z = ((a+b) + (c+d)) + ((e+f) + (x+y))

� Which registers do we use???

Method 1 – Clumsy

� We can take advantage of Java Strings and
encapsulate chunks of assembly code within
each ExprSTO.

� This will require a fixed register approach –
you will need to have registers that serve a
specific purpose (ie, a specific register is the
result of an operation, etc).

� Very confusing to keep track of!

Method 1 – Clumsy

� Always put operands into %o0 and %o1

� Useful for calling .mul, .div, .rem

� Compute operation, and place result in %g1

� Store the resulting assembly code into the

ExprSTO, without outputting to the file

� When that ExprSTO is used in another Expression,

dump the stored code and make some small register

moves.

2

Method 1 – Example

(a + b) + (x + y)
ld a, %o0 ld x, %o0

ld b, %o1 ld y, %o1

add %o0, %o1, %g1 add %o0, %o1, %g1

{place code (a+b) here}

mov %g1, %l0

{place code (x+y) here}

mov %l0, %o0

mov %g1, %o1

add %o0, %o1, %g1

Method 2 – Register Allocation

� Have some data structure that lets you know
what registers are free and which are currently
in use.

� Every time you need a register, request one
from the data structure, which will remove that
register from the available list

� When you are done with a register, let the data
structure know it is available for use again.

� This is a much better method!

Method 2 – Register Allocation

� Make some class (RegClass) with:

� GetFreeReg() – returns an available register

� FreeReg(String r) – marks that “r” is available

� You will need to store the allotted register in

your ExprSTO so you can reference it later.

Method 3 – Ld/Ld/Ex/St

� The load-load-compute-store method is by

far the easiest way to get through this project.

� The drawback is that it is highly inefficient.

� The benefit is that you don’t need to

remember very much stuff, nor keep track of

resources!

� Highly recommend if you are not very

familiar with SPARC and just want to get

something working!

Methods are your friend!

� Consider adding methods to your VarSTO’s
that make generating assembly for certain
cases easier:

� GetAddress() – returns base/offset (ie, %fp – 4)

� GetValue() – will combine GetAddress with an
appropriate load instruction

� Etc.

Conditions – Branching

� Given this:

if(b1) {

// statements

}

set b1, %l0

ld [%l0], %l0

cmp %l0, %g0

be IfL1 ! Opposite logic

nop

// statements here

IfL1:

3

Branching – Where to?

� You will need to generate labels for your
branch statements.

� These labels must be unique

� A simple solution would be to use some
prefix string (i.e., IfL), and append some
counter at the end:

� IfL1, IfL2, IfL3, …

Branching – Label Stack

� Consider if you had:

if(b1) {

if(b2) { /*…*/ }

}

� You will eventually need some sort of label
stack to alleviate issues that arise from
nested conditions.

Branching – Label Stack

if(b1) { – load b1, compare, branch to

L1, push L1 onto stack

if(b2) { – load b2, compare,

branch to L2, push L2 onto

stack

/*…*/

} - Pop L2 from stack and output

label

} - Pop L1 from stack and output

Functions

� How to call a function?

� Ex: call foo

nop

� How to return from a function?

� Ex: ret

restore

� How to return a value from a function?

� Ex: mov %l0, %i0

ret

restore

Functions – Example

function : int foo () {

int x;

x = 2;

return x;

}

Functions – Example

The following can be generated just by parsing
"function : int foo":

.section ".text"

.align 4

.global foo

foo:

set foo.SIZE, %g1

save %sp, %g1, %sp

4

Functions – Example

Now, the body of the function:

set 2, %l0 ! Put “2” in a
reg.

st %l0, [%fp-8] ! tmp1

ld [%fp-8], %l0

st %l0, [%fp-4] ! “x” is at
%fp-4

ld [%fp-4], %i0 ! Put “x” in
return

ret ! Return

Functions – Example

Lastly, now that we got to “}” (end of the function):

foo.SIZE = -(92 + 4 + 4) & -8

! Bytes of local vars and tmp vars

� By leaving this to the end, you can also allocate

extra stack space for intermediate expression

storage if needed during the body of the function,

like shown in this example.

Functions – What about float?

function : float foo () {

int x;

x = 2;

return x; /* must promote to float

*/

}

Functions – What about float?
.section ".text"

.align 4

.global foo

foo:

set foo.SIZE, %g1

save %sp, %g1, %sp

set 2, %l0 ! Put “2” in a reg.

st %l0, [%fp-8] ! tmp1

ld [%fp-8], %l0

st %l0, [%fp-4] ! “x” is at %fp-4

ld [%fp-4], %f0 ! Load x into an FP register

fitos %f0, %f0 ! Convert bit pattern to FP

! Now, return value is in %f0 after return

ret ! Return statement

restore

foo.SIZE = -(92 + 4 + 4) & -8

Float Arithmetic

float x, y;

function : int main() {

x = 94.25;

y = (x + 1) / x;

cout << y;

return 0;

}

Float Arithmetic
(slightly simplified)

.section ".bss"

.align 4

y: .skip 4

x: .skip 4

.global x, y

.section ".text"

.align 4

.global main

main:

set SAVE.main, %g1

save %sp, %g1, %sp

! switch to "data" to put FP constant

.section ".data"

.align 4

t1: .single 0r94.25

! switch back to "text"

.section ".text"

.align 4

! x = 94.25

set t1, %l0

ld [%l0], %f1

set x, %l1

st %f1, [%l1]

! y = (x + 1) / x;

set x, %l0

ld [%l0], %f1

set 1, %l0

st %l0, [%fp-4]

ld [%fp-4], %f2 ! Promote 1

fitos %f2, %f2 ! to a float

fadds %f1, %f2, %f1 ! x + 1

set x, %l0

ld [%l0], %f2

fdivs %f1, %f2, %f1

set y, %l1

st %f1, [%l1]

! cout << y;

set y, %l0

ld [%l0], %f0

call printFloat

nop

mov %g0, %i0

ret

restore

SAVE.main = -(92 + 4) & -8

! 4 bytes needed for temporary location

5

What to do Next!

1. Continue planning out how you want to

structure your project – good planning leads

to an easier design in the long run.

2. Finish Phase 1.

3. Start of Phase 2.

4. Come to lab hours and ask questions.

Topics/Questions you may have

� Anything else you would like me to go over

now?

� Anything in particular you would like to see

next week?

