
Login name _________________ Quiz 3 Name ______________________

CSE 131

Signature ___________________ Spring 2008 Student ID __________________

1. State whether each arithmetic expression will be performed at compile time or run time in the following.

function : void foo() /* Reduced-C. Follow this quarter's Spec. */
{
 int a = 5;
 const int b = 17;
 const int c = 7 + b; ______

 int[c / 6] d; ______

 int e = d[c + a]; ______

 d[5 - 2 + c] = e; ______

 e = d[foo1() + b]; ______ /* Assume: function : int foo1() { return 2; } */

 e = d[b + c]; ______

 d[31 - (a * b)] = e; ______

 e = d[d[0] + b]; ______
}

2. Show the memory layout of the following C struct/record definition taking into consideration the SPARC

data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate

struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the

appropriate memory locations. If the member/field is an array, use the name followed by the index number.

For example, some number of p[0]s, p[1]s, p[2]s, etc. Place an X in any bytes of padding. Structs and

unions are padded so the total size is evenly divisible by the most strict alignment requirement of its members.

struct foo { low memory
 char a; fubar:
 short b;
 double c;
 int d[3];
 char e;
};

struct foo fubar;

What is the offsetof(struct foo, d[1])? ________

What is the sizeof(struct foo)? ________

If struct foo had been defined as union foo instead,

what would be the sizeof(union foo)? _______

 high memory

1) Run time

2) Compile time

3. What is the difference between a function declaration and a function definition in C?

Give an example of each in C using the function name fubar.

Function declaration ___

Function definition ___

4. Use of typedefs in Reduced-C to define composite types

Using Reduced-C syntax, define an array of 7 pointers to int named foo such that

 int x = 42;

 foo[6] = &x;
 x = *foo[6];

are valid expressions. This will take two lines of Reduced-C code.

What question would you like to see on the Midterm?

