
Login name _________________ Quiz 1 Name ______________________ 
CSE 131B 

Signature ___________________ Spring 2005 Student ID __________________ 
 

Compilation/Compiler Overview, Names/Scopes/Bindings 
 

1. Give the order of the typical C/C++ compilation stages and on to actual execution as discussed in class 
 
 A – Program Execution   B – ccomp (C compiler) 
 C – Source file    D – exe/a.out (executable image) 
 E – as (assember)    F – ld (Linkage Editor) 
 G – cpp (C preprocessor)   H – loader  
 

gcc ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ 
 
 
2. Add the following production rule from Phase 0 to the oberon.cup file using the appropriate CUP grammar 
syntax and add action code such that the result of this production is the value of the symbol Designator. 
Assume the symbol NewStmt has been defined appropriately in the Symbol List toward the top of the CUP file. 
 
 NewStmt -> T_NEW T_LPAREN Designator T_RPAREN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which of the symbols in this grammar rule are non-terminal symbols? 
 
 
 
Which of the symbols in this grammar rule are terminal symbols? 
 
 
 
When this rule has been fully recognized by the parser, does this represent a shift or reduce? 
 
 
 
 (over) 



3.  Briefly explain the difference between syntax analysis and semantic analysis. 
 
 
 
 
 
 
 
4. A dangling reference is a term describing a condition in which a name (typically a pointer variable) is still 
bound to an object (memory location) but the object is no longer alive (the memory location allocated for that 
object has been deallocated and is no longer associated with that object).  Describe two conditions where this 
can occur.  Be specific. 
 
1) 
 
 
 
 
 
2) 
 
 
 
 
 
5.  The C programming language specifies any object allocated in the Data segment must be initialized with a 
compile time determined value.  The C++ programming language allows run time determined values (such as 
function call return values) to be used to initialize Data segment objects.  Global and external static variables 
are initialized before main() is called.  Internal static variables are initialized the first time encountered in the 
function in which they are defined. Consider the following C++ program.  Part of the output is supplied.  Fill in 
the missing values that get printed on the lines in the output box. 
 
#include <iostream> 
using namespace std; 
 
int a = 0; 
 
int foo( char *s ) { cout << "In foo() initializing " << s << endl; return ++a; } 
 
int z = foo( "z" ); 
 

Output 
 
In foo() initializing z 

In foo() initializing x 

In main() 

a = ___ 

In foo() initializing y 

x = ___ 

y = ___ 

z = ___ 

static int x = foo( "x" ); 
 
int 
main() 
{ 
  cout << "In main()" << endl; 
 
  cout << "a = " << a << endl; 
 
  static int y = foo( "y" ); 
 
  cout << "x = " << x << endl; 
  cout << "y = " << y << endl; 
  cout << "z = " << z << endl; 
 
  return 0; 
} 
 


