
 0

Login name _________________ Name ______________________

Signature ___________________ Student ID __________________

 Final
 CSE 131B
 Winter 2003

Page 1 ___________ (20 points)

Page 2 ___________ (25 points)

Page 3 ___________ (21 points)

Page 4 ___________ (40 points)

Page 5 ___________ (30 points)

Page 6 ___________ (25 points)

Page 7 ___________ (25 points)

Page 8 ___________ (14 points)

Subtotal ___________(200 points)

Page 9 ___________ (10 points)
Extra Credit

Total ___________

 1

1. Consider the following psuedocode:

 x : integer; -- global

 procedure set_x (n : integer)

x := n;

procedure print_x()
 output(x); -- print the value of x

 procedure one()
 x : integer;
 set_x(1);
 print_x();

 procedure two()
 set_x(2);
 print_x();

 set_x(0);
 one();
 print_x();
 two();
 print_x();

What does the program output What does the program output
if the language uses static scoping? (4 points) if the language uses dynamic scoping? (4 points)
 _____ _____
 _____ _____
 _____ _____
 _____ _____

Give an example of a converting type cast/conversion (underlying bit pattern needs to be changed). (4 points)

Give an example of an implicit type coercion (type conversion without an explicit cast). (4 points)

Give an example of a non-converting type cast/conversion (underlying bit pattern does not change). (4 points)

 2

2. Consider the following pseudocode:

 TYPE A = INTEGER;
 TYPE B = POINTER TO A;

 VAR a, b : A;
 VAR c : INTEGER;
 VAR d : B;
 VAR e : POINTER TO INTEGER;
 VAR f : B;

(15 points spread out over the following three questions.)

Which variables are considered equivalent under strict name equivalence?

________________ ________________ ________________ ________________

group 1 group 2 (opt) group 3 (opt) group 4 (opt)

Which variables are considered equivalent under loose name equivalence?

________________ ________________ ________________ ________________

group 1 group 2 (opt) group 3 (opt) group 4 (opt)

Which variables are considered equivalent under structural equivalence?

________________ ________________ ________________ ________________

group 1 group 2 (opt) group 3 (opt) group 4 (opt)

Using the Right-Left rule write the definition of a variable named XXX that is a pointer to a function that take a
pointer to an double as the single parameter and returns a pointer to an array of 9 elements where each element
is a pointer to a struct Pub. (6 points)

Given the array declaration
 C Oberon-like
 int a[2][3]; VAR a : ARRAY 2, 3 OF INTEGER

Mark with an A the memory locations where we would find (4 points)

 a[1][2] a[1,2]
a:

low memory high memory

 3

3. What major issue distinguishes a macro compared to an inline function? (4 points)

What gets printed? (9 points)

VAR a : INTEGER;

PROCEDURE foo1(VAR x : INTEGER);
BEGIN
 x := 77;

 OUTPUT a; __________________
END foo1;

PROCEDURE foo2(VAR y : INTEGER);
BEGIN
 y := 66;

 OUTPUT a; __________________

 foo1(y);

END foo2;

BEGIN
 a := 55;

 foo2(a);

 OUTPUT a; __________________
END.

How does a leaf subroutine differ from a traditional closed subroutine, specifically in the SPARC arch.?
List 2 ways they differ. (8 points)

1.

2.

 4

4. Identify where each of the following program parts live in the Java runtime environment as discussed in
class. (24 points)

public class Foo {
 private Foo a; a _________________

 private static int b; b _________________

 public Foo() { Foo() _________________

 a = this; this _________________
 ++b;
 }
 main() _________________

 public static void main(String[] args) { args _________________

 int c = 5; c _________________

 Foo d; d _________________

 d = new Foo(); where d is pointing _________________
 d.method(c);
 }
 method() _________________

 private void method(int e) { e _________________

 int f; f _________________
 f = e;
 }
}

Assume there is a Java class named Fubar that defines
 static method s_foo() that returns an int static int s_foo() { ... }
 static variable sv that is of type int
 instance method i_foo() that returns an int int i_foo() { ... }
 instance variable iv that is of type int
 instance variable ref that is a reference to a Fubar object and initialized
 Fubar ref = new Fubar();

State whether the following initializations are legal (no compiler error)? Explain why or why not. (16 points)

private static int sv = Fubar.s_foo();

private static int sv = ref.i_foo();

private int iv = ref.i_foo();

private int iv = ref.s_foo();

 5

5. Given the following program, order the printf() lines so that the values that are printed when run on a Sun
SPARC Unix system are displayed from smallest value to largest value. (20 points)

void foo(int, int); /* Function Prototype */

int a = 911;

int main(int argc, char *argv[]) {

 int b = 420; prints
 int c; ___________ smallest value

 foo(argc, b); ___________

/* 1 */ (void) printf("argc --> %p\n", &argc); ___________
/* 2 */ (void) printf("foo --> %p\n", foo);
/* 3 */ (void) printf("malloc --> %p\n", malloc(50)); ___________
/* 4 */ (void) printf("b --> %p\n", &b);
/* 5 */ (void) printf("a --> %p\n", &a); ___________
/* 6 */ (void) printf("c --> %p\n", &c);
} ___________

void foo(int d, int e) { ___________

 int f = 404; ___________
 static int g;

/* 7 */ (void) printf("d --> %p\n", &d); prints
/* 8 */ (void) printf("f --> %p\n", &f); ___________ largest value
/* 9 */ (void) printf("e --> %p\n", &e);
/* 10 */ (void) printf("g --> %p\n", &g);
}

In the following Java and C/C++ programs, which version will generally be faster / require less space if we
create several instances of a Foo object (or in the C/C++ version we call function foo() several times) and
access variable a many times? Explain why (time and space) for both the Java and the C/C++ versions. (10 pts)

Java Version 1 Java Version 2
public class Foo { public class Foo {
 static int[][] a = new int[100][100]; int[][] a = new int[100][100];

} }

C/C++ Version 1 C/C++ Version 2
void foo() { void foo() {
 int a[100][100] = {0}; static int a[100][100];

} }

 6

6. Given the following Oberon program, emit the unoptimized SPARC assembly language code that should be
generated for this program. Assume the global variables x, y, and z are allocated in the Data segment (given).
Assume no optimizations – treat each instruction separately without any knowledge of any previously
computed/loaded/stored values that may still be in a register from a previous instruction. Draw a line between
each group of assembly language instructions that represent the emitted code generated for each instruction and
label them with the instruction number. (25 points)

VAR x, y, z : INTEGER;

PROCEDURE foo(a : INTEGER; VAR b : INTEGER) : INTEGER;
 VAR i, j : INTEGER; (**** Local Stack variables – Do Not Need to Initialize to 0. ****)
BEGIN
 i := a + 5; (* 1 *)
 j := b - a; (* 2 *)
 b := i + 7; (* 3 *)
 RETURN b; (* 4 *)
END foo;

BEGIN
 INPUT x; (* 5 *)
 INPUT y; (* 6 *)
 z := foo(x, y); (* 7 *)
END.

 .global foo, main

 .section ".data"
 .align 4
x: .word 0
y: .word 0
z: .word 0

 .section ".text"
foo: main:
 save %sp, -(92 + 8) & -8, %sp save %sp, -96, %sp

 7

7. Given the following pseudocode

 read n;

 for (i = 0; i < n; ++i) {
 a[i] = n * i;

 if (n > 20)
 b[i] = a[i];
 }

the if (n > 20) is a loop invariant. Restructure this code to move it out of the loop to save up to 3 instructions
(cmp, conditional branch, nop) per loop iteration? Also perform any other explicit code improvements such as
redundant loads/stores (unnecessary memory accesses) and strength reduction if possible. No assembly – just
all high-level code like the above. You may add/change code as part of your code improvements. The idea is
the resulting code is faster to execute for any arbitrary value of n read in at runtime. (15 points)

 read n;

Consider the following code:

 ld [r1], r2
 add r1, 20, r1
 ld [r1], r3 ! Destination of this load is a source operand in next instr.
 ------ ! Stall 1 cycle (L1 cache hit) while load into r3 completes.
 add r2, r3, r4

Show how to shorten the time required for this code by moving the update of r1 forward into the delay slot of
the second load. Assume r1 is still live (needed) at the end of this code. Make whatever other alterations to
individual instructions to maintain correctness. The idea is to reduce this chunk of code from 5 cycles to 4
cycles. No assembly – just this virtual register pseudo-assembly code like the above. (10 points)

 8

8. Consider the following code:

 r5 = r2 x r4 ! Assume general multiply takes 5 instruction cycles.
 ----- ! Leave the multiply alone.

 r6 = r5 + r1
 r1 = r1 + 20

Show how to shorten the time required for this code by moving the update of r1 backward into one of the delay
slots of the multiply. Assume all the registers used here are still live (needed) at the end of this code. Make
whatever other alterations to individual instructions or additional/new instructions in the delay slots to maintain
correctness. You may use other registers not used here. The idea is to reduce this chunk of code from 7 cycles to
6 cycles. No assembly – just this virtual register pseudo-assembly code like the above. (10 points)

Why do computer programmers confuse Halloween with Christmas? (2 point)

Tell me something you learned in this class that is extremely valuable and that you think you will be able to use
for the rest of your programming/computer science career. (2 point)

 9

9. Extra Credit (10 points)

What is the value of each of the following expressions?

char *a = "End this, please!"; /* char a[] = "End this, please!"; */

"I loved Compilers B!"[6] _____________

a[1] _____________

*a _____________

*(a+12) _____________

*&a[5] _____________

0["This Blows Me Away!"] _____________

Given the following ANSI/ISO C variable definitions, identify which expressions will produce a static semantic
compiler error. Hint: Think modifiable l-value. A) No compiler error
 B) Compiler error
 int i = 5;
 float f = 1.5;
 int *iPtr = &i;
 float *fPtr = &f;

 *iPtr = (int) *fPtr; ______

 (float *) iPtr = fPtr; ______

 fPtr = &(i + f); ______

 ++((float *) iPtr); ______

Scratch Paper

