Student ID

Login Name

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Page 8

Final
CSE 131
Winter 2008

Subtotal

Page 9

Extra Credit

Total

Signature

Name

(24 points)
(28 points)
(37 points)
(24 points)
(9 points)

(12 points)
(12 points)

(40 points)

(186 points)

(12 points)

1. Given the following CUP grammar snippet (assuming all other Lexing and terminals are correct):

Stmt ::= Designator T ASSIGN {: System.out.println("A"); :} Expr {: System.out.println("B"); :} T_SEMI
Expr ::= Expr {: System.out.println("C"); :} AddOp {: System.out.println("D"); :} Designator

| Designator {: System.out.println("E"); :}
Designator ::= T ID {: System.out.println("F"); :}

AddOp ::= T PLUS {: System.out.println("+"); :}

’

What is the output on the screen when the follow statement is given as input:

a=>b + c;

Rewrite the Expr rule so expressions like a + b + c will evaluate asa + (b + c). Do not include the actions.

Which of the following would be correct if we wanted to add the minus sign (-) as an operator with higher
precedence than the current plus sign (+)?

A c
Expr :: = Expr Op Designator Expr :: = Expr T PLUS Exprl
| Designator | Exprl
Op ::= T MINUS Exprl = Exprl T MINUS Designator
| T PLUS | Designator
B b
Expr :: = Expr Op Designator Expr = Expr T MINUS Exprl
| Designator | Exprl
Op ::= T PLUS Exprl ::= Exprl T PLUS Designator

| T MINUS | Designator

2. In object-oriented languages like Java, determining which overloaded method code to bind to (to execute) is
done at run time rather than at compile time (this is known as dynamic dispatching or dynamic binding).
However, the name mangled symbol denoting a particular method name is determined at compile time. Given
the following Java class definitions, specify the output of each print() method invocation.

class Peter {
public void print (Peter p) {
System.out.println ("Peter 1");
}
}

class Lois extends Peter {
public void print (Peter p) {
System.out.println("Lois 1");

}

public void print (Lois 1) {
System.out.println ("Lois 2");
}
}

class Brian extends Lois {
public void print (Peter p) {
System.out.println ("Brian 1");

}

public void print (Lois 1) {
System.out.println ("Brian 2");

}

public void print (Brian b) {
System.out.println ("Brian 3");
}
}

public class Overloading Final Exam {
public static void main (String
Lois famGuyl = new Lois();

] args) {

Peter famGuy2 = new Lois();
Peter famGuy3 = new Brian();
Brian famGuy4 = new Brian();

)

Peter famGuy5 = new Peter (

famGuyl.print (new Lois());

((Peter) famGuyl) .print (new Lois());

famGuy2.print (new Lois());

((Lois) famGuy2) .print (new Lois());

((Brian) famGuy3) .print (new Brian());

famGuy3.print (new Brian());

((Brian) famGuy3) .print (new Lois());

famGuy4.print (new Brian());

((Peter) famGuy4) .print (new Brian());

((Peter) famGuy4) .print (new Lois());

((Peter) famGuy4) .print (new Peter());

famGuy5.print (new Brian());

famGuy5.print (new Lois());

famGuy5.print (new Peter());

3. In your Project 2, how did you (and your partner if you had a partner) handle allocating and accessing global
variables? Be specific how your project implemented this!

Which part of the entire compilation sequence clear through to program execution is responsible for:

a) resolving undefined external references with defined global references in other modules

b) ensuring the bss segment is set up and zero-filled

c) translating C source code into assembly target code

d) getting the executable image from disk into memory

e) translating assembly source code into object target code

f) creating an executable from multiple object files

e) expanding #defines and #includes

Using Reduced-C syntax, define a pointer to an array of 5 ints named foo such that (*foo) [4] = 421isa
valid expression. This will most likely take two lines of code.

Change the following into two instructions that is an improvement over a single multiply instruction

r3 = r2 * 17

Optimize the following. x represents a memory location.

x = rl

r2 = x

Optimize the following
rl = r2 + r4

r3 =rl + r5

r6 = r2 + r4
rl = 15 + ro6
r6e = re = ...

4. Given the following Reduced-C code, write the equivalent code generated in SPARC Assembly.

/* Reduced-C */ /* Equivalent SPARC Assembly code */

function : bool foo(int & a)

{
bool b;
int ¢ = 5;

a = ¢Ccy

return b;

}

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named
bar that is an array of 8 elements where each element is a pointer to a function that takes a pointer to a struct
fubar as a single parameter and returns a pointer to an array of 3 elements where each element is a pointer to a
pointer to a struct Baz. (9 points)

5. The following program to test linked lists in Reduced-C has three bugs that are manifested at run-time.
Identify all three of them and what needs to be changed to fix each bug. Each change should require only one
minor modification to the code (you should *not* need to do any restructuring of multiple lines of code).

1 structdef LIST {

2 int data;

3 LIST* next;

4 };

5 function : void createlList (LIST* list) {
6 new list;

7 list->data = 77;

8 new list->next;

9 list->next->data = 99;

10 }

11 function : void printList (LIST* &list) {

12 while (list != NULL) {

13 cout << list->data << endl;
14 list = list->next;

15 }

16 1}

17 function : void deleteList (LIST* list) {

18 if (list->next == NULL) {
19 deletelist (list->next);
20 }

21 delete list;

22}

23 function : void main () {

24 LIST* head;

25 createlList (head) ;

26 printList (head) ;

27 deletelist (head) ;

28 1}

/*****************************

Correct output should be:
77
99

(with no memory leaks)
*****************************/

1)

2)

3)

6. Consider the following error messages and programs as defined in the starterCode and Project I:

El) public static final String errorb5n Call =

o)

"Number of arguments (%D) differs from number of parameters (%D).";

E2) public static final String errorb5c Call =
"Non-addressable argument passed to reference parameter %S (type %T).";

E3) public static final String errorb5v Call =
"Argument of type %T not equivalent to reference parameter %S, of type %T.";

E4) public static final String errorba Call =
"Argument of type %T not assignable to value parameter %S, of type $T.";

function : bool foo(float a)

{

return true;

function : int main () {
float a;
int b;
bool c;

foo(/* Pass a var here */); Listall variables which can be passed as an argument to foo()
return 0; without causing a compile error?

Which error message (E1, E2, E3, E4) should be displayed if you tried to pass any of the variables that might
cause a compile error? If no vars would cause an error, state "No Error".

function : bool foo(float & a)

{

return true;

function : int main () {
float a;
int b;
bool c;

foo(/* Pass a var here */); Listall variables which can be passed as an argument to foo()
return 0; without causing a compile error?

Which error message (E1, E2, E3, E4) should be displayed if you tried to pass any of the variables that might
cause a compile error? If no vars would cause an error, state "No Error".

function : bool foo(float & a)

{

return true;

}

function : int main () {
int c;
foo(c + 2.5); Which error message (E1, E2, E3, E4) should be displayed? If not an error,

return 0; state "No Error".

7. Consider the following two C program files:

/* filel.c */ /* file2.c */
#include <stdio.h> #include <stdio.h>
extern float a; extern int c;
extern int foo(float z);
static int ¢ = 420; int a = 420;
int main(int argc, char *argv([]) { int foo(void) {
int 1 = c; static int b = 37;
for (1 =0; 1 < ¢c; ++1) ++a;
(void) printf("%d ", foo(i)); (void) printf("%d ", b);
return 0; return c;

} }

Trying to separately compile each file and then link the resulting object modules
gce —c filel.c filel.c —>filel.o
gee —c file2.c file2.c —>file2.0
gcc filel.o file2.0 filel.o & file2.0 — a.out

results in just one error being reported. We discussed some of the problems/complications imposed on the
compiler when trying to perform static semantic type checking with separate compilation.

What error will be reported (specif(?/ the symbol name and a general description of what the problem is). Hint:
The error will be reported in the 3™ gce call which attempts to link the already compiled and assembled object
modules.

Assume we fixed this error so the program will fully compile/link. How many times does the variable b in
function foo() get initialized (once or every time function foo() is called)?

C (unlike C++) requires all global and static variable initializations to be done completely at compile time so
the values in the Data segment are known at compile time. Can we change the initialization of b in file2.c to be
static int b = bar(); assuming function bar() is properly defined? Why or why not?

Can we change the initialization of i in filel.ctobe int i = bar(); assuming function bar() is properly
defined? Why or why not?

Identify two other potential semantic errors in this program that the C compiler and linker did not detect, but lint
will identify.
1y

2)

8. Given the following program, specify the order of the output lines when run and sorted by the address
printed with the %p format specifier on a Sun SPARC Unix and Linux system. For example, which line will
print the lowest memory address, then the next higher memory address, etc. up to the highest memory address?

#include <stdio.h>
#include <stdlib.h>

void fool(int *, int); /* Function Prototype */
void foo2(int, int *); /* Function Prototype */

int main(int argc, char *argv[]) {

int a = 42;

int b;
smallest value

foo2(a, &argc); (lowest memory address)
/* 1 */ (void) printf("1: foo2 --> %p\n", foo2);
/* 2 */ (void) printf("2: a --> %$p\n", &a);
/* 3 */ (void) printf("3: argv --> %p\n", &argv);
/* 4 */ (void) printf("4: b --> %Sp\n", &b);
/* 5 */ (void) printf("5: argc --> %p\n", &argc);
}
void fool(int *c, int d) {

static int e = 404;
struct foo {int a; int b;} £f:

int g;
/* 6 */ (void) printf("6: d --> %$p\n", &d);
/* 7 */ (void) printf("7: malloc --> %$p\n", malloc(50));
/* 8 */ (void) printf("8: e --> %Sp\n", &e);

/* 10 */ (void) printf("10: f.b --> %$p\n", &f.b);
/* 11 */ (void) printf("11: g --> %p\n", &g);

/* 12 */ (void) printf("12: f.a --> %$p\n", &f.a);
}

(
(
(
/* 9 */ (void) printf("9: ¢ --> %p\n", &c);
(
(
(

void foo2(int h, int *1) {

int j[2];
static int k;

fool(j, h);

/* 13 */ (void) printf
/* 14 */ (void) printf
/* 15 */ (void) printf
/* 16 */ (void) printf
/* 17 */ (void) printf

"13: h --> $p\n", &h);

"14: 3[1] --> 3p\n", &3[1]);
"15: 1 --> $p\n", &i);

"16: k --> %p\n", &k);

"17: 3[0] -=> %p\n", &3 [0]); largest value

(highest memory addresses)

How can you reduce the stack space required for a large number of local variables of different types on a typical
RISC architecture with no optimization compiler flags turned on?

What is the name of Rick's favorite beer?

Variables declared to be will not be optimized by the compiler.

9. Extra Credit (12 points total extra credit)
What gets printed when this program is executed?
#include <stdio.h>
int main(void)
{
char a[] = "CSE131 Rocks!";
char *p = a + 3;
printf ("%c", ++*p);
printf ("%c", ++*++p);
printf("%c", *p++ + 1);
p=p+2;
printf ("%c", *p = *p + 3);
printf("%c", -—*p++);

printf("%d", p - a);

return O;

}

For each of the following give the equivalent expression which in most cases is how the C compiler really
treats/handles the expression.

int a[5];
struct foo { int a; double b; } * p;

If array a is located at memory location 0x5000, what memory location is a[3]?

If p has the value 0x6000, what memory location is p->b?

Tell me something you learned in this class that is extremely valuable to you and that you think you will be able
to use for the rest of your computer science career. (1 point if serious; you can add non-serious comments also)

Crossword Puzzle (next page) (1 point)

Hexadecimal - Character

00 NUL| 01 SOH| 02 STX| 03 ETX| 04 EOT|
08 BS | 09 HT | OA NL | OB VT | 0C NP |
10 DLE| 11 DC1]| 12 DC2| 13 DC3| 14 DC4|
18 CAN| 19 EM | 1A SUB| 1B ESC| 1C FS |

|

|

|

|

20 SP	21 !	22 "	23 4	24 $	
28 (] 29)	22 *	2B +	2¢ ,		
30 0	31 1	32 2	33 3	34 4	
38 8	39 9	3A	3B ;	3C <	
40 @	41 A	42 B	43 C	44 D	
48 H	49 I	42 J	4B K	4C L	
50 P	51 Q	52 R	53 S	54 T	
58 X	59 Y	52 Z	5B [5C \	
60 Y	61 a	62 b	63 c	64 d	
68 h	69 i	6& 3§	6B k	6C 1	
70 p	71 g	72 r	73 s	74 t	
78 x	79 y	72 z	7B {	7C	

A portion of the Operator Precedence Table

Operator Associativity

++ postfix increment L to R
-- postfix decrement

* dindirection R to L
++ prefix increment

-- prefix decrement

& address-of

* multiplication L to R
/ division

% modulus

+ addition L to R
- subtraction

= assignment R to L

05 ENQ|
0D CR |
15 NAK|
1D GS |
25
2D -
35
3D
45
4D
55
5D
65
6D
75
7D

o\

~ c 3 0 — G 2 =

06 ACK|
OE SO
16 SYN|
1E RS

26
2E
36
3E
46
4E
56
5E
66
6E
76
TE

&

> < =Z 1V ooy e

< B rh

07 BEL|
0F ST |
17 ETB|
1F US |
27 7|
2F /|
37 7 |
3F 27 |
47 G |
4F O |
57 W |
5F |
67 g |
oF o |
77 w |
7F DEL |

10

Scratch Paper

11

Scratch Paper

12

