
The Q&D First Time
Compiler Writer’s Guide to

the SPARC V.8
Instruction Set
Architecture

by

Peter Graham
Dept. of Computer Science

University of Manitoba
Winnipeg, MB

CANADA R3T 2N2
pgraham@cs.umanitoba.ca

© Peter Graham, 1994

Introduction

This document has been written to provide the fundamental information needed for a
student in a compiler writing course to produce code for the SPARC architecture. SPARC
is an architecture not an implementation. The difference is that the “architecture”,
sometimes referred to as the “instruction set architecture” (ISA), specifies only those
features which are visible to a programmer of the machine. It does not specify details of
the “implementation” which do not affect the programming interface. Such features may
affect performance, but do not affect how code is written. Designers of chips which
implement the SPARC architectue are free to implement the features of the ISA in any
manner they choose. This can lead to highly efficient (and expensive) implementations or
less efficient (but more cost-effective) ones. There are several versions of the SPARC
architecture which permit for the evolution of the architecture and prevent the rapid
decline of it. This document describes version 8 of the SPARC architecture. It does not
consider any implementation details and thus lacks the details required to effectively
implement certain advanced compiler optimizations that depend on implementation
details such as cache sizes. This should not be a problem for a student compiler project.

SPARC is a RISC architecture as are most modern architectures (at the time of
writing). RISC stands for Reduced Instruction Set Computer. This name is only partially
indicative of the overall design philosophy for the architecture. The name RISC implies
an architecture with a small, simple set of instructions. Of course, the instruction set is
only one aspect of a computer’s architecture. There is also the register set, the addressing
modes, instruction formats, etc. All of these features are typically also “reduced” (or
simplified) in a typical RISC architecture.

The name originates from early research into effective microprocessor design done at
various locations including U.C. Berkeley (the RISC-1 microprocessor which eventually
evolved into the SPARC architecture), Stanford (a RISC-like architecture which led to
the MIPS architecture), and IBM (an effort which after much thrashing led to the
POWER architecture). The motivation for RISC machines arose from the observation that
existing machines spent over 90% of the time executing instructions from only about
15% of the instruction set. The rapid advances being made in VLSI technology at the time
were making more powerful microprocessors (32 bit machines) possible and cost-
effective. Such machines could conceivably rival mini and mainframe computer systems
if they could provide similar performance. To do this though it was important to make the
best possible use of the available “silicon real estate”. This meant that instructions (and
other “complex” features of the architecture) had to be sacrificed to make room for
performance related implementation features such as pipelines and caches. The RISC
philosophy provided a guideline for what to sacrifice.

RISC machines typically have large register sets (not strictly a component of RISCs
but a good use of silicon), a simple instruction set (which can be used to do complex
operations through instruction sequences), a fixed instruction format (which helps with
pipelining), and limited but general purpose addressing modes (normally used only by
load and store instructions). A key philosophy behind RISC is that the language compilers
which produce code for these architectures should be relied upon to exploit architectural
knowledge to produce code sequences which will execute efficiently. To accomplish this,

RISC architectures often make more details of the architecture visible to the programmer
(and compiler) than older CISC (Complex Instruction Set Computer) architectures do.
Some architectures take this idea to the extreme (e.g. the I960 where the operation of the
pipeline is exposed and under compiler control - the compiler says when the next pipeline
“tick” occurs) while others, including the SPARC, take a more moderate approach. The
exposure of architectural detail complicates the programmer or compiler writer’s life but
the other aspects of the RISC philosophy simplify it (e.g. a compiler has fewer code
generation choices in a RISC than in a CISC). For better or worse, RISC architectures are
the current trend and compiler writers must be prepared to generate code for them.

Normally compilers may generate either assembly or machine code. For a student
compiler, in particular, it is preferable to produce assembly code. This simplifies code
generation because symbolic names rather than absolute addresses may be used and it
also aids in readability, understandability, and debugging. Since this document is geared
towards the writing of student compilers, no information concerning machine code details
(e.g. opcodes and operand formats) will be given. All discussions will address the
assembly code level. If more detailed information is required concerning machine level or
other details the definitive reference souce is “The SPARC Architecture Manual -
Version 8” by SPARC International Ltd., published by Prentice Hall, ISBN 0-13-825001-
4. A similar manual for the 64 bit version of the SPARC architecture (version 9) should
also be available from Prentice Hall.

The rest of this document is organized into several sections. The first of these is an
overview which discusses the features of the ISA at a high level. The architecture is then
presented in detail in the following four sections which discuss data formats, the register
set, operand addressing, and the instruction set respectively. Immediately thereafter, the
assembly language syntax is presented. Finally, the document concludes with some
sample code illustrating the use of the assembly language.

Overview

The SPARC architecture defines a modern 32 bit RISC processor family featuring a
complete set of computational instructions, a load-store architecture, and a windowed
register set. The key features of SPARC of interest to compiler writers include the
following:

1. A linear address space of 232 bytes - this is important because it means that the
compiler writer need not be concerned about addressing limitations introduced by
architectures such as the old 80x86 family.

2. Only two addressing modes (register+register and register+immediate) - this
means that the ways in which data may be accessed by generated code are limited
and thus simplifies the process of deciding on code to address program data.

3. Simple operand format - all instructions (except loads and stores, and ...) operate
using three registers (source1, source2, and destination) - this precludes the need
to select a “location” (register or memory) for each operand and thus simplifies
not only code generation but also register management.

4. Cleanly separated integer and floating point sub-units - this means that in many
cases, floating point code and nearby integer code may be dealt with more or less
separately (e.g. there are separate integer and floating point register sets so
instructions in the two groups do not conflict for register access)

5. Few and simple instruction formats - this is of concern only to compilers
generating machine code but in this case offers simplified code generation

6. Overlapped windowed integer register set - this register organization complicates
the handling of code related to register management (in particular, handling
register spills is more difficult).

7. Delayed control transfer - this feature is an example of architectural detail made
visible to the compiler and complicates code generation by asking the compiler to
do some simple code reorganization

Data Formats

The SPARC architecture defines several different data types with corresponding
formats. There are the traditional signed and unsigned integer and floating point types
which are available in various sizes to support differing needs for range and precision.
The supported operand sizes are:

Name Size
byte 8 bits
halfword 16 bits
word 32 bits
doubleword 64 bits
quadword 128 bits

Signed integer data may be represented in any of four different sizes; byte, halfword,
word, and doubleword. Unsigned integers are available in the same sizes. Floating point
data is available in any of three sizes; word, doubleword, and quadword.

Signed integers are represented using 2’s complement while unsigned are represented
as simple binary numbers. The floating point representations vary with the data size
selected. A single precision floating point number (stored in a word) has the following
format:

A double precision number has the format:

An extended precision number has the format:

exp[7:0] mantissa [22:0]s
s

s exp[14:0] mantissa [111:64]

mantissa [63:0]

s exp[10:0] mantissa [51:0]

The resulting ranges of the various floating point formats are summarized in the
following table:

Precision Value Sizes
single (-1)s x 2e-127 x 1.f e(8 bits), f(23 bits)
double (-1)s x 2e-1023 x 1.f e(11 bits), f(52 bits)
extended (-1)s x 2e-16383 x 1.f e(15 bits), f(112 bits)

The SPARC architecture definition requires that data be aligned on certain byte
boundaries in order to ensure efficient access. The rules for alignment are simple
halfwords must be aligned on addresses which are divisible by two, words on addresses
divisible by four, etc. Related to alignment is the question of how bytes are stored within
halfwords, words, etc. SPARC is a “big-endian” architecture. Thus, the most significant
byte is stored first in a larger unit of storage (i.e. at a lower memory address).

Register Set

The SPARC architecture’s register set may be conveniently divided into two parts:
those registers which are used for special purposes, and the “general purpose” registers
which are structured as a set of overlapping register windows. We focus on the general
purpose registers since the special purpose ones are of only limited interest to the
compiler writer and are typically related to advanced functions which are beyond the
scope of this document.

The general purpose registers may also be divided into two groups: the integer register
set and the floating point register set. The floating point register set is a conventional
collection of 32, 32 bit registers. The integer registers however are structured as a set of
overlapped register “windows” together with 8 global integer registers.

The SPARC architecture supports from 2 to 32 sets of register windows each
consisting of 24 registers. The 24 registers are subdivided into three groups of 8 registers
each; the in registers, the out registers, and the local registers. The in and out registers are
used to permit efficient passing of arguments to subroutines as well as the efficient return
of results. To accomplish this, the out registers of a caller are mapped to the same
physical registers as the in registers of the callee. Thus, any data written into the caller’s
out registers appears in the callee’s in registers when it is invoked. Similarly, the callee
may write return values in its in registers and after return, the caller will find that data in
its out registers. The use of the overlapped register set is ideal for passing small data
values such as integers, characters, and pointers to more complex structures. The passing
of large structures and (optionally - integer registers could be used) floating point values
is accomplished using conventional stack based techniques. The local registers are strictly
for the use of the current subroutine and are not shared with any others.

The registers may be addressed using two different forms. The in registers may be
referred to as ‘in[0]’ through ‘in[7]’. Similarly, the out registers, the local registers, and
the global registers may be referred to as ‘out[0]’ through ‘out[7]’, ‘local[0]’ through

‘local[7]’, and ‘global[0]’ through ‘global[7]’ respectively. Alternatively, the registers
may be referred to as ‘r[0]’ through ‘r[31]’ with ‘global[0]’ through ‘global[7]’ mapping
to ‘r[0]’ through ‘r[7]’, ‘out[0]’ through ‘out[7]’ mapping to ‘r[8]’ through ‘r[15]’,
‘local[0]’ through ‘local[7]’ mapping to ‘r[16]’ through ‘r[23]’, and ‘in[0]’ through
‘in[7]’ mapping to ‘r[24]’ through ‘r[31]’.

The following example illustrate overlapping register windows. In what follows,
assume that procedure ‘A’ calls procedure ‘B’ which calls procedure ‘C’.

 A’s register set

B’s register set

 C’s register set

Certain of the registers are used for special purposes during particular processor
operations and thus, caution should be used when generating code which uses them. In
particular, if ‘r[0]’ is referenced as a source operand, the constant zero is returned.
Further, ‘r[15]’ is modified by the “CALL” instruction and ‘r[17]’ and ‘r[18]’ are set
when a trap occurs. This last special use of registers should not be a concern to the
normal compiler writer since the modification occurs only in the register window for the
trap handler and since code is not being generated for any trap handlers, there is no need
for concern during code generation.

Finally, certain operations (integer multiply and divide) also require register pairs as
operands. These are specified by supplying the even numbered register of the pair. Special
attention should be paid to this during register allocation.

Operand Addressing

The SPARC is a load store machine architecture. That means that computational
instructions such as adds and compares never reference memory. All such operations
occur within the general purpose registers. Only the load and store instructions actually
reference memory. This is a typical feature of RISC machine architectures. Thus, the form
of operand addressing is only a concern for load and store instructions. In keeping with
the RISC philosophy, the available addressing modes are limited and simple.

ins

outs

locals

outs ins

ins

locals

locals

outs

outs

A memory location may be specified using either two registers or a register and an
immediate value (in both cases, the two values are added together to form an effective
address from which data is loaded or to which data is stored).

Operands may also be “addressed” in registers for computational instructions. In this
case, the registers specification may be given in either form discussed previously.

Instruction Set

The fundamental principle of a RISC architecture, as the name suggests, is a restricted
set of orthogonal instructions. The SPARC architecture adheres to this principle. The
following describes an incomplete subset of the instructions offered by the SPARC
architecture. Those instructions which are not of concern to the beginning compiler writer
are simply omitted. For example, the instructions for optional co-processors are not
presented. On the other hand, there are definitely more instructions discussed here than
will be needed for a typical compiler project. You must select an appropriate instruction
for whatever must be done.

In what follows, the notation ‘regrd’ refers to an integer destination register
specification. Similarly, ‘regrs1’ refers to the first integer source register and ‘regrs2’
refers to the second integer source register. Similar notations prefixed by an ‘f’ identify
floating point registers (e.g. ‘fregrs1’). The notation ‘reg_or_imm’ corresponds to an
operand which may be either a register specification or a 13 bit signed immediate (i.e.
constant) value. The notation ‘imm22’ refers to an unsigned 22 bit immediate value. The
‘address’ specifications may be either two registers or a register and an immediate
value (as described previously). Bear in mind that addresses specified must satisfy the
alignment requirements specified earlier. Finally, the notation ‘label’ refers to a label in
the assembly language program.

For instructions which operate on two operands, the first operand specification refers
to the left operand while the second refers to the right operand. This is important for non-
commutative operations.

The SPARC architecture supports condition codes, both integer and floating point
which are separate. Certain instructions set the condition codes while others do not.
Integer instructions have opcodes suffixed with ‘cc’ if they set the integer condition
codes. Floating point operations always set the floating point condition codes.

Integer Load Instructions
ldsb load signed byte - right justified in register and sign extended

ldsb [address], regrd
ldsh load signed halfword - right justified in register and sign extended

ldsh [address], regrd
ldub load unsigned byte - right justified in register and zero filled

ldub [address], regrd
lduh load unsigned halfword - right justified in register and zero filled

lduh [address], regrd
ld load word

ld [address], regrd

ldd load doubleword - load into an even-odd register pair
ldd [address], regrd

Integer Store Instructions
stb store byte - signed and unsigned are the same (writes to a byte)

stb regrd, [address]
sth store halfword - signed and unsigned are the same (writes to a halfword)

sth regrd, [address]
st store word

st regrd, [address]
std store doubleword - store doubleword from an even-odd register pair

std regrd, [address]

Floating Point Load Instructions
ld load floating point - note overloading of ‘ld’ (but ‘freg’ not ‘reg’)

ld [address], fregrd
ldd load double floating point - note overloading of ‘ldd’ (but ‘freg’ not ‘reg’)

ldd [address], fregrd

Floating Point Store Instructions
st store floating point - note overloading of ‘st’ (but ‘freg’ not ‘reg’)

st fregrd, [address]
std store double floating point - note overloading of ‘std’ (but ‘freg’ not ‘reg’)

std fregrd, [address]

Logical Instructions
and logical AND of two operands, condition codes not set

and regrs1, reg_or_imm, regrd
andcc logical AND of two operands, condition codes are set

andcc regrs1, reg_or_imm, regrd
andn logical AND with second operand negated, condition codes not set

andn regrs1, reg_or_imm, regrd
andncc logical AND with second operand negated, condition codes are set

andncc regrs1, reg_or_imm, regrd
or logical OR of two operands, condition codes not set

or regrs1, reg_or_imm, regrd
orcc logical OR of two operands, condition codes are set

orcc regrs1, reg_or_imm, regrd
orn logical OR with second operand negated, condition codes not set

orn regrs1, reg_or_imm, regrd
orncc logical OR with second operand negated, condition codes are set

orncc regrs1, reg_or_imm, regrd
xor logical XOR of two operands, condition codes not set

xor regrs1, reg_or_imm, regrd
xorcc logical XOR of two operands, condition codes are set

xorcc regrs1, reg_or_imm, regrd
xnor logical XNOR of two operands, condition codes not set

xnor regrs1, reg_or_imm, regrd
xnorcc logical XNOR of two operands, condition codes are set

xnorcc regrs1, reg_or_imm, regrd

Shift Instructions
sll shift left logical, zero filled from the right

sll regrs1, reg_or_imm, regrd
srl shift right logical, zero filled from the left

srl regrs1, reg_or_imm, regrd
sra shift right arithmetic, sign bit propogated from the right

sra regrs1, reg_or_imm, regrd

Arithmetic Instructions
add add, condition codes not set

add regrs1, reg_or_imm, regrd
addcc add, condition codes are set

addcc regrs1, reg_or_imm, regrd
addx add extended (with carry), condition codes not set

addx regrs1, reg_or_imm, regrd
addxcc add extended (with carry), condition codes are set

addxcc regrs1, reg_or_imm, regrd
sub subtract, condition codes not set

sub regrs1, reg_or_imm, regrd
subcc subtract, condition codes are set

subcc regrs1, reg_or_imm, regrd
subx subtract extended (with carry), condition codes not set

subx regrs1, reg_or_imm, regrd
subxcc subtract extended (with carry), condition codes are set

subxcc regrs1, reg_or_imm, regrd
umul unsigned 32x32 bit multiply, condition codes not set

umul regrs1, reg_or_imm, regrd
umulcc unsigned 32x32 bit multiply, condition codes are set

umulcc regrs1, reg_or_imm, regrd
smul signed 32x32 bit multiply, condition codes not set

smul regrs1, reg_or_imm, regrd
smulcc signed 32x32 bit multiply, condition codes are set

smulcc regrs1, reg_or_imm, regrd
udiv unsigned 64x32 bit divide, condition codes not set

udiv regrs1, reg_or_imm, regrd
udivcc unsigned 64x32 bit divide, condition codes are set

udivcc regrs1, reg_or_imm, regrd
sdiv signed 64x32 bit divide, condition codes not set

sdiv regrs1, reg_or_imm, regrd
sdivcc signed 64x32 bit divide, condition codes are set

sdivcc regrs1, reg_or_imm, regrd

Miscellaneous Instructions

sethi zero the least significant 10 bits of ‘regrd’ and replaces its high order 22
bits with the value from its 22 bit immediate value

sethi imm22, regrd
nop no operation

nop

Branch Instructions

The SPARC architecture is designed for pipelined execution and to prevent stalls
in the pipeline, branch delay slots are implemented. This means that in most cases, the
instruction immediately following the branch in memory is executed regardless of
whether or not the branch is taken. It is the compiler writer’s responsibility to place a
“useful” instruction in the branch delay slot following branches instructions. Moving
an instruction from before the branch to after the branch is what is normally
attempted, but this is a difficult optimization. Placing a ‘nop’ in the branch delay slot
is always correct if not optimal. Another way to deal (sub-optimally) with the branch
delay slot is to annul the instruction following the branch in which case it is not
executed but a pipeline stall is required. The suffix ‘,a’ in the following indicates that
the annul bit is set.

ba{,a} branch always
ba label

bn{,a} branch never
bn label

bne{,a} branch not equal
bne label

be{,a} branch equal
be label

bg{,a} branch greater than
bg label

bge{,a} branch greater or equal
bge label

bl{,a} branch less than
bl label

ble{,a} branch less or equal
ble label

bleu{,a} branch less or equal unsigned
bleu label

bcc{,a} branch carry clear (i.e. no carry)
bcc label

bcs{,a} branch carry set
bcs label

bpos{,a} branch positive
bpos label

bneg{,a} branch negative
bneg label

bvc{,a} branch overflow clear

bvc label
bvs{,a} branch overflow set

bvs label
fba{,a} floating point branch always

fba label
fbn{,a} floating point branch never

fbn label
fbg{,a} floating point branch greater than

fbg label
fbl{,a} floating point branch less than

fbl label
fbne{,a} floating point branch not equal

fbne label
fbe{,a} floating point branch equal

fbe label
fbge{,a} floating point branch greater or equal

fbge label
fble{,a} floating point branch less or equal

fble label

Subroutine-related Instructions
save save caller’s window and add operands (from old context) and write the

result (in the new context)
save regrs1, reg_or_imm, regrd

restore restore caller’s window and add operands (from old context) and write the
result (in the new context)

restore regrs1, reg_or_imm, regrd
call call and link - PC relative immediate address

call label
jumpl jump and link - register indirect (2 regs or reg + immed)

jmpl address, regrd

Floating Point Instructions
fmovs move ‘fregrs2’ to ‘fregrd’

fmovs fregrs2, fregrd
fnegs move ‘fregrs2’ to after negating it ‘fregrd’

fnegs fregrs2, fregrd
fabss move absolute value of ‘fregrs2’ to ‘fregrd’

fabss fregrs2, fregrd
fsqrts single precision floating point square root

fqrts fregrs2, fregrd
fsqrtd double precision floating point square root

fsqrtd fregrs2, fregrd
fsqrtq quad precision floating point square root

fsqrtq fregrs2, fregrd
fadds single precision floating point add

fadds fregrs1, fregrs2, fregrd

faddd double precision floating point add
faddd fregrs1, fregrs2, fregrd

faddq quad precision floating point add
faddq fregrs1, fregrs2, fregrd

fsubs single precision floating point subtract
fsubs fregrs1, fregrs2, fregrd

fsubd double precision floating point subtract
fsubd fregrs1, fregrs2, fregrd

fsubq quad precision floating point subtract
fsubq fregrs1, fregrs2, fregrd

fmuls single precision floating point multiply
fmuls fregrs1, fregrs2, fregrd

fmuld double precision floating point multiply
fmuld fregrs1, fregrs2, fregrd

fmulq quad precision floating point multiply
fmulq fregrs1, fregrs2, fregrd

fsmuld single precision floating point multiply to double precision result
fsmuld fregrs1, fregrs2, fregrd

fdmulq double precision floating point multiply to quad precision result
fdmulq fregrs1, fregrs2, fregrd

fdivs single precision floating point divide
fdivs fregrs1, fregrs2, fregrd

fdivd double precision floating point divide
fdivd fregrs1, fregrs2, fregrd

fdivq quad precision floating point divide
fdivq fregrs1, fregrs2, fregrd

fcmps single precision floating point compare
fcmps fregrs1, fregrs2

fcmpd double precision floating point compare
fcmpd fregrs1, fregrs2

fcmpq quad precision floating point compare
fcmpq fregrs1, fregrs2

Conversion Instructions
fitos convert integer to single precision floating point

fitos fregrs2, fregrd
fitod convert integer to double precision floating point

fitod fregrs2, fregrd
fitoq convert integer to quad precision floating point

fitoq fregrs2, fregrd
fstoi convert single precision floating point to integer

fstoi fregrs2, fregrd
fdtoi convert double precision floating point to integer

fdtoi fregrs2, fregrd
fqtoi convert quad precision floating point to integer

fqtoi fregrs2, fregrd
fstod convert single to double precision floating point

fstod fregrs2, fregrd
fstoq convert single to quad precision floating point

fstoq fregrs2, fregrd
fdtos convert double to single precision floating point

fdtos fregrs2, fregrd
fdtoq convert double to quad precision floating point

fdtoq fregrs2, fregrd
fqtos convert quad to single precision floating point

fqtos fregrs2, fregrd
fqtod convert quad to double precision floating point

fqtod fregrs2, fregrd

Synthetic Instructions

There are certain synthetic instructions that the assembler may provide for the
convenience of assembly language programmers (or compiler writers). These are
intended to provide common operations which an assembly language programmer
might expect but which are not directly supported by the machine architecture. The
assembler maps these synthetic instructions to less obvious machine instructions or to
short sequences of machine instructions. These operations are presented here without
a specification of their machine instruction equivalents. This should not be a problem
for an introductory compiler writer. Some operations are ommitted to prevent possible
trouble.

cmp compare
cmp regrs1, reg_or_imm

jmp jump to an address discarding “return address”
jmp address

call call a subroutine and save “return address” in ‘%o7’
call address

tst test a value to set condition codes
tst regrs2

ret return from subroutine
ret

set set register to value without concern for value’s size
set value,regrd

not one’s complement
not regrs1, regrd

not one’s complement in place
not regrd

neg two’s complement
neg regrs1, regrd

neg two’s complement in place
neg regrd

inc increment
inc regrd

inc increment by amount

inc const13, regrd
inccc increment and set condition codes

inccc regrd
inccc increment by amount and set condition codes

inccc const13, regrd
dec decrement

dec regrd
dec decrement by amount

dec const13, regrd
deccc decrement and set condition codes

deccc regrd
deccc decrement by amount and set condition codes

deccc const13, regrd
btst bit test

btst reg_or_imm, regrs1
bset bit set

bset reg_or_imm, regrd
bclr bit clear

bclr reg_or_imm, regrd
btog bit toggle

btog reg_or_imm, regrd
clr clear register

clr regrd
clrb clear byte

clr [address]
clrh clear halfword

clr [address]
clr clear word

clr [address]
mov move data

mov reg_or_imm, regrd

Assembly Language Syntax

The SPARC architecture, naturally, does not define an assembly language syntax (its
not part of the ISA). Thus, there are many possible assembly language formats that may
be implemented in different operating environments running on or targetting the SPARC
architecture. The SPARC Architecture Manual does define a “suggested” assembly
language syntax and that is what will be used throughout this document. Be aware that
syntactic details may change from system to system.

The opcodes are as specified in the preceding section. Register specifications are
preceded by the percent sign as in ‘%i7’, ‘%f27’ or ‘%r16’. In addition to the ‘r’, ‘i’, ‘l’,
‘o’, and ‘g’ register specification, the notations ‘%sp’ and ‘%fp’ may be used to refer to
the stack pointer and frame pointer respectively. There are not special purpose registers
for the stack and frame pointer. Instead, by convention these registers are mapped to
‘%o6’ and ‘%i6’ respectively.

The syntax ‘%hi(32bitValue)’ and ‘%lo(32bitValue)’ is also supported.
These expressions extract the high order 22 and low order 10 bits of the 32 bit value
(normally an address) specified. Of course, the use of the synthetic ‘set’ instruction
precludes the need for these in most cases.

Labels are composed of a sequence of characters including letters, digits, underscores,
dollar signs, and periods. A label may not begin with a digit but otherwise, there are no
restrictions.

References to data at a specified address is made by using the syntax ‘[address]’ while
references to addresses themselves omit the square brackets. When more than one source
is used to form an address (i.e. two registers or a register and an immediate field) either a
‘+’ or a ‘-’ is placed between them as required.

Comments are introduced using the exclamation point (‘!’) and continue from that
point to the end of line.

Assembler directives vary greatly between OS platforms. Consult the “SUN-4
Assembly Language Reference Manual” for details on directives.

Example Code

Knowing the individual details of the SPARC architecture is sufficient information to
permit an experienced compiler writer to begin writing a code generator. For a first time
student compiler writer however, more information is typically needed. This section
presents some example code generated by a compiler for a conventional high level
language. While the code is presented, the method of generating the code is not.

The following code was generated by the Gnu C compiler without optimization and is
indicative of the results of simple code generation. The original source code is shown and
the resulting assembly code has been documented with explanatory notes. The Gnu C
compiler (‘gcc’) has an option to enable the generation of assembly code in a file with
suffix ‘.s’. This is a useful approach to learning about what kind of code should be
generated for various constructs.

! The original source code was:
!
! void main()
!
! {
! int i,j;
!
! for (i=;i<100;i++) {
! j=i*3+44;
! if (j>60) {
! j--;
! } else {
! j++;
! }
! printf(“j is %d.\n”,j);
! }
! }
!
! The generated SPARC assembly code is:
!

gcc2_compiled.:
___gnu_compiled_c:
.text

.align 8
LC0:

.ascii “j is %d.\12\0” ! string literal - printf

.align 4

.global _main

.proc 020
_main: ! code entry point

!#PROLOGUE# 0
save %sp,-120,%sp ! reserve stack space
!#PROLOGUE# 1
call ___main,0
nop ! branch delay slot
st %g0, [%fp-20] ! zero ‘i’

L2: ! top of loop
ld [%fp-20],%o0 ! load ‘i’
cmp %o0,99 ! test against loop bound
bg L3 ! branch if done
nop ! branch delay slot
ld [%fp-20],%o0 ! get ‘i’ again
move %o0,%o2
sll %o2,1,%o1 ! multiple by two and
add %o1,%o0,%o1 ! add one to get multiply by three
add %o1,44,%o0 ! add 44 to that
st %o0,[%fp-24] ! and store it in ‘j’
ld [%fp-24],%o0 ! load ‘j’
cmp %o0,60 ! test in if (is it greater than 60)
ble L5 ! if less or equal do ELSE part
nop ! branch delay slot

! the THEN part of the IF
ld [%fp-24],%o1 ! load ‘j’
add %o1,-1,%o0 ! ‘j--’
mov %o0,%o1
st %01,[%fp-24] ! store result
b L6 ! branch around ELSE part of the IF
nop ! branch delay slot

L5:
ld [%fp-24],%o1 ! load ‘j’
add %o1,1,%o0 ! ‘j++’
mov %o0,%o1
st %o1,[%fp-24] ! store result

L6: ! end of IF
sethi %hi(LC0),%o1 ! setup for call to printf
or %o1,%lo(LC0),%o0
ld [%fp-24],%o1 ! point to ‘j’ for printf
call _printf,0
nop ! branch delay slot

L4:
ld [%fp-20],%o1 ! load ‘I’
add %o1,1,%o0 ! increment loop index ‘I’
mov %o0,%o1
st %o1,[%fp-20] ! store ‘I’
b L2 ! back to top of loop
nop ! branch delay slot

L3:
L1:

ret ! return to O/S (executed as s/r)
restore ! restore stack (in delay slot)

