
 0

Student ID __________________ Name ______________________

Login Name ___________________ Signature _____________________

 Final

 CSE 131

 Spring 2008

Page 1 ___________ (25 points)

Page 2 ___________ (30 points)

Page 3 ___________ (33 points)

Page 4 ___________ (21 points)

Page 5 ___________ (20 points)

Page 6 ___________ (22 points)

Page 7 ___________ (15 points)

Page 8 ___________ (30 points)

Subtotal ___________(196 points)

Page 9 ___________ (13 points)

Extra Credit

Total ___________

 1

1. Given the following Reduced-C code fragment:

 Reduced-C

function : int foo(int & a, int b)
{
 /* Body of code not important for this question */
}

function : int main()
{
 int a = 10;
 int b;

 b = foo(a, b);

 return 0;
}

Complete the SPARC Assembly language statements that might be emitted by a compliant Reduced-C compiler

from this quarter for function main().

 .section _________

 .global _________
 .align 4

_______:
 set _________________, %g1

 save ________, %g1, ________

 /* int a; -- stored at %fp - 4 */
 /* int b; -- stored at %fp - 8 */

 /* Initialize the local variables */

 set _________, %o0

 st %o0, [____________]

 st _________, [____________]

 /* Set up the 2 arguments to foo() */

 _______ _________, __________, %o0

 _______ [____________], %o1

 /* Call function foo() */

 call foo ! Call function foo()

 /* Save return value into local variable b */

 _______ %o0, [____________]

 /* Return 0 */

 mov _________, _________

 MAIN_SAVE = -(92 + _______) ________ ________ ! Save space for 2 local vars

 2

2. In object-oriented languages like Java, determining which overloaded method code to bind to (to execute) is

done at run time rather than at compile time (this is known as dynamic dispatching or dynamic binding).

However, the name mangled symbol denoting a particular method name is determined at compile time. Given

the following Java class definitions, specify the output of each print() method invocation.

class Moe {
 public void print(Moe p) {
 System.out.println("Moe 1");
 }
}

class Larry extends Moe {
 public void print(Moe p) {
 System.out.println("Larry 1");
 }

 public void print(Larry l) {
 System.out.println("Larry 2");
 }
}

class Curly extends Larry {
 public void print(Moe p) {
 System.out.println("Curly 1");
 }

 public void print(Larry l) {
 System.out.println("Curly 2");
 }

 public void print(Curly b) {
 System.out.println("Curly 3");
 }
}

public class Overloading_Final_Exam {
 public static void main (String [] args) {
 Larry stooge1 = new Curly();
 Moe stooge2 = new Larry();
 Moe stooge3 = new Curly();
 Curly stooge4 = new Curly();
 Larry stooge5 = new Larry();

 stooge1.print(new Moe()); _____________________

 ((Curly)stooge1).print(new Larry()); _____________________

 ((Larry)stooge2).print(new Moe()); _____________________

 stooge2.print(new Curly()); _____________________

 stooge3.print(new Curly()); _____________________

 stooge3.print(new Moe()); _____________________

 stooge3.print(new Larry()); _____________________

 ((Curly)stooge3).print(new Larry()); _____________________

 ((Curly)stooge3).print(new Curly()); _____________________

 stooge4.print(new Curly()); _____________________

 stooge4.print(new Moe()); _____________________

 stooge4.print(new Larry()); _____________________

 stooge5.print(new Curly()); _____________________

 stooge5.print(new Larry()); _____________________

 stooge5.print(new Moe()); _____________________
 }
}

 3

3. In your Project 2, explain how did you (and your partner if you had a partner) handle code gen of cin with a

float variable (as in a statement like: cin >> floatVar)? Be specific how your project implemented this!

Give the order of the phases of compilation in a typical C compiler as discussed in class

 A – Parser (Semantic Analysis) E – Scanner (Lexical Analysis)

 B – Target language file (for ex., prog.s) F – Parser (Syntax Analysis)

 C – Source language file (for example, prog.c) G – Intermediate Representation(s)

 D – Code generation (for ex., Assembly)

 ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______

Using Reduced-C syntax, define an array of 7 pointers to ints named foo such that *foo[6] = 42 is a valid

expression. This will take two lines of code.

For each of the following make no assumptions of what may be above or below each window of instructions.

Change the following into two instructions that is an improvement over a single multiply instruction

r3 = r2 * 511 ______________

Optimize the following into three instructions. x represents a memory location.

x = r1 ______________
r2 = r1 + r3
x = r1 ______________
r3 = x
x = r2 ______________

Optimize the following into a single instruction. Assume r1, r3, and r4 are not needed after last statement.

r1 = 15
r2 = r2 * 1 ______________
r3 = 7 + r1
r4 = r3 - r1
r5 = r4 + r2

 4

4. Given the following Reduced-C code and the Project 2 Spec,

What line of SPARC assembly code (after the save instruction) should your compiler generate with regards to

the variable definition of x? (Phase I.1)

What run time check and normal code should your compiler generate for the delete statement? Fill in the

SPARC assembly instructions to perform this run time check and the actual delete. (Phase III.1 & 2)

 ld [_________], %o0

 _____ %o0, %g0

 _____ .Delete_Error22

 nop

 call _______

 nop

 st _______, [_________]

 _____ .L37

 nop

.Delete_Error22:

 /* Assume correct code to output delete error message here, then ... */

 set ______, %o0

 call ______

 nop

.L37:

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named

foo that is a 2-d array of 3 rows by 5 columns where each element is a pointer to an array of 7 elements where

each element is a pointer to a function that takes a pointer to a pointer to a float as a single parameter and

returns a pointer to an array of 9 elements where each element is a pointer to a struct bar. (10 pts)

/* Reduced-C */

function : void main()
{
 int * x;

 delete x;
}

 5

5. Write a short test program in Reduced-C to verify a change to a call-by-reference parameter in a function

immediately updates the object the parameter references. (10 pts)

What output do you expect from this program if the call-by-reference is implemented correctly?

Phase II.3 from Project 2: Assume struct foo has been correctly defined and its size has been loaded into

register %l3. Given the following C code, how might a compiler generate SPARC code to perform struct

assignment without copying each struct member one-by-one?

struct foo a; // Assume local variable a is located at %fp – 96
struct foo b; // Assume local variable b is located at %fp – 192

 ... // Other code that may access/modify a and b
 // sizeof(struct foo) is in register %l3 at this point
 b = a; // Write the SPARC Assembly code to perform this struct assignment

 6

6. Given the following Reduced-C code fragment:

 bool a;
 int b;

 function : void foo(int & x, float y)
 { /* function body */ }

Using variables a, b, and the expression (b + 3) as possible arguments to the function foo(),

Give an example function call to foo() that triggers an assignability error (and only this error).

Give an example function call to foo() that triggers an addressability error (and only this error).

Give an example function call to foo() that triggers an equivalence error (and only this error).

Given the following C code fragment of local variable definitions:

int x = 420;
float y = 4.20;
int * ptr1 = &x;
int * ptr2 = ptr1;

for each statement below indicate whether it will cause a compile error or not on a current compliant compiler?

Treat each statement individually as if it was the only statement following the definitions above. Remember: the

increment operator is performing arithmetic (addition) and assignment. The result of this operation is the

incremented value.

A) No Error

B) Compile Error

ptr2 = &++x; _____

(float *)ptr2 = &y; _____

ptr2 = ++&x; _____

&*ptr2 = ptr1; _____

ptr1 = *&ptr2; _____

*&ptr2 = ptr1; _____

++*(float *)&x; _____

ptr1 = &*ptr2; _____

 7

7. Show the memory layout of the following C struct/record definition taking into consideration the SPARC

data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate

struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.

For example, some number of p[0]s, p[1]s, p[2]s, etc. If the member/field is a struct, use the member

name followed by it's member names (e.g. p.a, p.b). Place an X in any bytes of padding. Structs and unions are
padded so the total size is evenly divisible by the most strict alignment requirement of its members.

 low memory
 fubaz:

 high memory

What is the offsetof(struct fubar, g.b)? ________

What is the sizeof(struct fubar)? ________

What is the resulting type of the following expression (pure beauty – my kind of Picasso)?

 * (char *) & (((struct foo *) & fubaz) -> b) _______________________________

Write the equivalent expression that directly accesses this value/memory location without all the fancy

casting/operators.

 fubaz.________________

struct foo {
 short a;
 double b;
 char c;
};

struct fubar {
 float d;
 int e;
 char f[5];
 struct foo g;
 short h;
};

struct fubar fubaz;

 8

8. Given the following C++ program (whose semantics in this case is similar to our Reduced-C) and a real

compiler's code gen as discussed in class, fill in the values of the global and local variables and parameters in

the run time environment for the SPARC architecture when the program reaches the comment /* HERE */. Do

not add any unnecessary padding.

 hypothetical memory locations

 low memory

 high memory

What is Rick's gangsta name? _______________________

Variables declared to be _________________ will not be optimized by the compiler.

x: 2000

.

.

.

.

.

.

Heap

4000

.

.

.

...

%fp

20020

20120

y:

struct fubar {
 float a;
 int b;
 float * c;
};

float x;
int y;

void foo(int i, float & f) {
 int * var1;
 struct fubar var2[2];
 int var3;

 var1 = (int *) calloc(1, sizeof(int));
 f = 98.6;
 var2[1].b = *var1;
 var2[0].c = &x;
 var2[0].a = f;
 var2[0].b = i + 5;
 var2[1].a = -40.5;
 var2[1].c = &var2[0].a;
 var3 = 123;
 i = -99;
 *var1 = var3 - 3;

 /* HERE */

 free(var1);
}

int main() {
 foo(y, x);

 return 0;
}

 9

9. Extra Credit (13 points total extra credit)

What gets printed when this program is executed?

#include <stdio.h>

int
main()
{
 char a[] = "CSE030 Rolls!";
 char *p = a + 2;

 printf("%c", *p++); ______

 printf("%c", ++*p); ______

 printf("%c", ++p[2]); ______
 p = p + 4;
 printf("%c", *++p = a[11] + 2); ______
 p++;
 printf("%c", a[10] = *++p - 7); ______

 printf("%d", p - a); ______

 printf("\n%s\n", a); _________________

 return 0;
}

With regard to the following C definition:

 double x;

What type is (struct bar *) &x ? ___________________________________

Is the above expression a modifiable l-val? ___________

What type is *(long *) &x ? _________________________________

Is the above expression a modifiable l-val? ___________

Tell me something you learned in this class that is extremely valuable to you and that you think you will be able

to use for the rest of your computer science career. (1 point if serious; you can add non-serious comments also)

Crossword Puzzle (next page) (1 point)

 10

 Hexadecimal - Character

 | 00 NUL| 01 SOH| 02 STX| 03 ETX| 04 EOT| 05 ENQ| 06 ACK| 07 BEL|

 | 08 BS | 09 HT | 0A NL | 0B VT | 0C NP | 0D CR | 0E SO | 0F SI |

 | 10 DLE| 11 DC1| 12 DC2| 13 DC3| 14 DC4| 15 NAK| 16 SYN| 17 ETB|

 | 18 CAN| 19 EM | 1A SUB| 1B ESC| 1C FS | 1D GS | 1E RS | 1F US |

 | 20 SP | 21 ! | 22 " | 23 # | 24 $ | 25 % | 26 & | 27 ’ |

 | 28 (| 29) | 2A * | 2B + | 2C , | 2D - | 2E . | 2F / |

 | 30 0 | 31 1 | 32 2 | 33 3 | 34 4 | 35 5 | 36 6 | 37 7 |

 | 38 8 | 39 9 | 3A : | 3B ; | 3C < | 3D = | 3E > | 3F ? |

 | 40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47 G |

 | 48 H | 49 I | 4A J | 4B K | 4C L | 4D M | 4E N | 4F O |

 | 50 P | 51 Q | 52 R | 53 S | 54 T | 55 U | 56 V | 57 W |

 | 58 X | 59 Y | 5A Z | 5B [| 5C \ | 5D] | 5E ^ | 5F _ |

 | 60 ‘ | 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67 g |

 | 68 h | 69 i | 6A j | 6B k | 6C l | 6D m | 6E n | 6F o |

 | 70 p | 71 q | 72 r | 73 s | 74 t | 75 u | 76 v | 77 w |

 | 78 x | 79 y | 7A z | 7B { | 7C | | 7D } | 7E ~ | 7F DEL|

A portion of the Operator Precedence Table

Operator Associativity

++ postfix increment L to R
-- postfix decrement

* indirection R to L
++ prefix increment
-- prefix decrement
& address-of

* multiplication L to R
/ division
% modulus

+ addition L to R
- subtraction

 .
 .
 .

= assignment R to L

 11

Scratch Paper

 12

Scratch Paper

