
CSE 131 – Compiler Construction

Discussion 8: Miscellaneous Stuff

03/01/2010

03/05/2010

Address-Of

� ptr = &x;

� Since “x” would be addressable, take the address

of “x” and store it in ptr (as opposed to the value

of “x”).

Address-Of

� ptr = &x;

set x, %l0

set ptr, %l1

st %l0, [%l1]

Function Pointers

� Remember that all we need to call a function is the

unique name to give the “call” instruction.

� For function pointers, you should have the name

readily available at compile-time, so just output

what the current function name is for the function

pointer. Additionally, you can “call” on a register

holding an address.

� Struct member functions can be also be assigned to

function pointers: 8-byte function pointers

Function Pointers

function : void foo() { /* */ }

function : void main() {

funcptr : void() x;

x = foo;

x();

}

.section ".text"

.align 4

.global foo
foo:

…

.global main
main:

set main.SAVE, %g1
save %sp, %g1, %sp
set foo, %l0
st %l0, [%fp-12] ! tmp1
ld [%fp-12], %l0
st %l0, [%fp-4] ! x in fp-4
st %g0, [%fp-8] ! not a struct function

ld [%fp-4], %l0 ! Load x

call %l0

nop

ret

restore

main.SAVE = -(92 + 4 + 4) & -8

Type Casts

� Depends heavily on work from Project I. In

addition to the compile-time conversions,

you now have to handle run-time

conversions.

� Remember a pointer is essentially an integer,

so there is no conversion between pointers

to/from int.

Static Variables

� External (in global scope):

� Just like regular global variables (both initialized and

uninitialized)

� Need to handle runtime initialization (like regular global

variables)

� Internal (inside a function):
� Need to handle initialization.

� If uninitialized or constant initialized, you can just use BSS or

Data.

� If runtime initialized, need to have special flag memory to only

initialize the variable when the function is called for the first time

Static Variables

int w;

function : void foo() {

static int x = w;

// …

}

.section ".bss"

.align 4

w: .skip 4

foo_x: .skip 4

foo_x_flag: .skip 4

.section ".text"

.align 4

.global foo

foo:

set foo.SAVE, %g1

save %sp, %g1, %sp

set foo_x_flag, %l0

ld [%l0], %l0

cmp %l0, %g0

bne skipInit

nop

set w, %l0

ld [%l0], %l0

set foo_x, %l1

st %l0, [%l1]

set 1, %l0

set foo_x_flag, %l1

st %l0, [%l1]

skipInit: …

foo.SAVE = -(92 + 0) & -8

Extern variables

� What to do for a variable declared “extern”:

� Put it on the symbol table

� In assembly, access the variable through its name

by setting the corresponding label to a register

� So the only assembly you generate for extern

variables are the instructions you need to

read and write to the variable (and of course

possibly take address-of)

� No space for “extern” vars is allocated by the

module in which they are declared

Extern vs. static vs. global

Module a

int x;

static int y;

extern int z;

extern int i;

Module b

extern int x;

extern int y;

extern int z;

int i;

Link-time error?

NO

YES

YES

NO

� Above, it does not really matter which module is your rc.s and which
module is the separately linked object module – either case should
produce (or not produce) the specified link-time errors

Extern vs. static vs. global

int x;

static int y;

extern int z;

function : void main(){

cout << x << y << z;

}

.section ".rodata"

intFmt: .asciiz "%d"

endl: .asciiz "\n"

.section ".bss"

.align 4

x: .skip 4

.global x

y: .skip 4

.section ".text"

.align 4

.global main

main:

set main.SAVE, %g1

save %sp, %g1, %sp

! print global var x

set intFmt, %o0

set x, %l0

ld [%l0], %o1

call printf

nop

!print static var y

set intFmt, %o0

set y, %l0

ld [%l0], %o1

call printf

nop

!print extern var z

set intFmt, %o0

set z, %l0

ld [%l0], %o1

call printf

nop

ret

restore

main.SAVE = -(92 + 0) & -8

Runtime Checks

� We are providing syntactically and semantically
correct code, but there are a few runtime errors you
need to check:

� Array out-of-bounds for array indexes that are unknown
at compile time

� Dereferencing or deleting NULL pointers and “calling”
NULL function pointers

Runtime Array Checks

int[3] myArr;

int x;

function : int main() {

x = 47;

x = myArr[x];

return 0;

}

Runtime Array Checks

� x = myArr[x];
set x, %l0

ld [%l0], %l0 ! Value of x at runtime

set 3, %l1 ! Dimension of array (from declaration)

cmp %l0, %l1 ! Checking upper-bound

bl arrayLabel22

nop

… Do error msg here and exit program

arrayLabel22:

… continue checking of lower-bound (>= 0), then get value at myArr[x]

Extra Credit

� EC 1: Deallocated stack space is defined as

the entire region of the RTS that:

� Starts at the lowest value of %sp that is reached

during program execution

� Ends at the current value of %sp+92

� So, you will need to make memory address

comparisons: use unsigned branches after the

“cmp” instruction: bgu, bgeu, blu, bleu

Extra Credit

� EC 2: Passing more than 6 arguments to
functions (more than 5 arguments to struct
member functions)

� See the example in the Project II Specs

� Basically, need to allocate additional stack space
in the caller, copy arguments into that stack
space, call the function, deallocate stack space

Extra Credit

�EC 3: Extend function overloading
for code generation

� If you did the EC from Project I, this
should be easy.

� We will not test assigning an
overloaded functions to function
pointers

What to do Next!

1. Finish Phase 3.

2. Thoroughly test and re-test Phase 1, 2, and 3.

3. Come to lab hours and ask questions.

4. Work on Extra Credit (9%)!!

Topics/Questions you may have

� Anything else you would like me to go over

now?

