
 0 

Signature ___________________  Name ______________________ 
 

Login Name _________________  Student ID __________________ 

 

 

 Midterm 

 CSE 131B 

 Spring 2006 

 
 

Page 1   ___________ (19 points)  

 

Page 2   ___________ (26 points) 
 

Page 3   ___________ (20 points) 
 

Page 4   ___________ (20 points) 
 

Page 5   ___________ (15 points) 

 

 

Subtotal  ___________(100 points) 
 

Page 6   ___________ (5 points) 

Extra Credit 

 

 

Total   ___________ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

1. Using the following type and variable declarations, indicate the size of each of the variables (in bytes) in the 

space provided. In the event that a type definition for a variable is an error/indeterminate size, write the word 

"ERROR" in the blank.  (2 pts each) 

 
TYPE rec1 = RECORD  
       a : INTEGER;  
       b : REAL;  
       c : ARRAY 10 OF POINTER TO rec1;  
       d : POINTER TO rec1;  
       e : POINTER TO REAL;  
     END;  
 
TYPE rec2 = POINTER TO RECORD  
       a : ARRAY 900, 900 OF REAL;  
       b : RECORD  
         a : REAL;  
         b : INTEGER;  
         c : ARRAY 20 OF rec2; 
       END;  
     END;  
 
TYPE rec3 = RECORD  
       a : INTEGER;  
       b : REAL;  
       c : RECORD  
         d: rec3;  
       END;  
       e : POINTER TO rec3;  
     END;  
 
TYPE foo1 = ARRAY 10, 10 OF rec2;  
 
TYPE foo2 = RECORD  
       a : foo1;  
       b : rec1;  
       c,d : rec2;  
     END;  
 
VAR myRec1 : rec1; _________ 
 
VAR myRec2 : rec2; _________ 
 
VAR myRec3 : rec3; _________ 
 
VAR myFoo1 : foo1; _________ 
 
VAR myFoo2 : foo2; _________ 
 

 

 

 

Using the Right-Left rule write the C/C++ definition of a variable named fubar that is a pointer to a function 

which takes two arguments, a pointer to a char and a pointer to a pointer to a float, and returns a pointer to an 

array of 4 elements where each array element is of type pointer to struct foobaz.   (9 pts) 

 

 

 

 



 2 

2. The types in Oberon variable definitions are often unnecessary in the sense that it is possible to infer 

variables' types and detect type errors simply from their use.  For each of the following program fragments, find 

a set of types that makes it legal, and write an Oberon definition for each variable.  If there is more than one 

possible type, choose only one.  If there is none, write "NONE".  Assume all arrays are of size 8. (2 pts each) 
 
 
    a[b^] := b; 
 
VAR a : _____________________________________________ ; 
 
VAR b : _____________________________________________ ; 
 
 
 
 
 
 
    IF a[b] # c& THEN 
        b := c + d; 
    END 
 
VAR a : _____________________________________________ ; 
 
VAR b : _____________________________________________ ; 
 
VAR c : _____________________________________________ ; 
 
VAR d : _____________________________________________ ; 
 
 
 
 
 
 
    IF (a # b) OR c THEN 
        b := c; 
    END 
 
VAR a : _____________________________________________ ; 
 
VAR b : _____________________________________________ ; 
 
VAR c : _____________________________________________ ; 
 
 
 
 
 
 
    IF a[b]& = c THEN 
        c^ := b / d; 
    END 
 
VAR a : _____________________________________________ ; 
 
VAR b : _____________________________________________ ; 
 
VAR c : _____________________________________________ ; 
 
VAR d : _____________________________________________ ; 

 



 3 

3.  Given the following type, variable, and function definitions, state whether each function call would match 

(A) the first 

(B) the second 

(C) the third 

(D) none (illegal call) 

(E) more than one of the definitions (ambiguous call)     ( 2 pts each) 
 
TYPE peter = REAL; 
TYPE lois = peter; 
 
VAR chris : lois; 
VAR meg : INTEGER; 
 
 
FUNCTION quagmire (brian : peter, stewie : INTEGER) : INTEGER; (* first *) 
BEGIN 
   RETURN 0; 
END quagmire; 
 
FUNCTION quagmire (REF brian: INTEGER, stewie : peter) : INTEGER; (* second *) 
BEGIN 
   RETURN 0; 
END quagmire; 
 
FUNCTION quagmire (brian : peter, REF stewie : lois) : INTEGER; (* third *) 
BEGIN 
   RETURN 0; 
END quagmire; 
 
BEGIN 
   quagmire(chris, meg);   _____ 
 
   quagmire(meg, chris);   _____ 
 
   quagmire(meg + meg, chris + chris);  _____ 
 
   quagmire(meg, meg);    _____ 
 
   quagmire(meg, chris + meg);   _____ 
 
   quagmire(meg + meg, chris);   _____ 
 
   quagmire(chris + meg, chris + meg);  _____ 
 
   quagmire(chris, chris);   _____ 
 
   RETURN 0; 
END. 

 

 

Although we did not allow it in this quarter's project specification, record/struct assignment is relatively straight 

forward requiring same/equal types for both operands to the binary assignment operator ( := ). It certainly is 

defined in the C family of languages.  So ... if assignment is defined for records/structs in languages like C, why 

is record equality ( equals / not equals ) not defined?  From the compiler's point of view, why is record/struct 

equality difficult?  (4 pts) 

 

 

 



 4 

4.  Given the following array definition 

 
    /* C */       (* Oberon *) 
 double x[50][20];    VAR x : ARRAY 50,20 OF LONGREAL; 

 

write the assembly level address calculation expression taking into account scalar arithmetic to access 

 
 x[i][j]       x[i,j] 

 

 

(( x + _________________________________________ ) + _______________________________________ ) 

 

The result is the address of where we can find this array element. (8 points) 

 

 

 

Assume the array access was in a nested loop construct to print each array element in order like the following: 

 
for ( i = 0; i < 50; ++i ) 
  for ( j = 0; j < 20; ++j ) 
    print( x[i][j] ); 

 

Why would using a traversal pointer be more efficient? (2 pts) 

 

 

 

 

 

Replace the above nested loop code by writing the definition for a traversal pointer (named ptr), the statement to 

assign/initialize the traversal pointer, and the loop code to print each element in the array above using this 

traversal pointer. If you prefer to use pseudo-Oberon syntax instead of C syntax, you can assume pointer 

arithmetic is defined the same as in C.  (10 pts) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

5.  Assume the following definitions are correct:  (2 pts each) 

 
TYPE rec1 = RECORD 
       ptr : POINTER TO INTEGER; 
     END; 
 
TYPE rec2 = RECORD 
       ptr : POINTER TO rec1; 
     END; 
 
VAR ptr : POINTER TO rec2; 
VAR a, b : INTEGER; 

 

 

a) What type is ptr^.ptr^.ptr ? 

 

 

b) What type is ptr^ ? 

 

 

c) What type is ptr^.ptr^.ptr^ ? 

 

 

d) What type is ptr^.ptr ? 

 

 

For the following, assume each statement is independent of each other. You cannot use the result of a previous 

statement in the answer for a subsequent question. You can only use the above vars and types. You cannot use 

NIL. 

 

e) Write the Oberon statement to have ptr in rec1 point to variable b. 

 

 

 

f) Write the Oberon statement to assign variable a the value of the integer pointed to by ptr in rec1. 

 
 a :=  
 

g) Write a valid statement with variable c (defined below) on the lhs (left hand side) of the assignment 

statement. You cannot use c or NIL. 

 
VAR c : POINTER TO rec1; 

 
 c :=   
 

 

 

 

 

 

Do you promise to have a good time tomorrow at Sun God Festival ... or wherever you may be tomorrow ... oh, 

even at Richard's Discussion Section before hitting SGF hard? (1 pt) 



 6 

Extra Credit (5 points) 

 

Given the following definitions: 

 
 int i1 = 5;   /* Assume i1 is at memory location 4000 */ 
 int i2 = 10;  /* Assume i2 is at memory location 5000 */ 
 float f = 1.5;  /* Assume f is at memory location 6000 */ 
 int *i1Ptr = &i1;  /* Assume i1Ptr is at memory location 7000 */ 
 int *i2Ptr = &i2;  /* Assume i2Ptr is at memory location 8000 */ 
 float *fPtr = &f;  /* Assume fPtr is at memory location 9000 */ 
 
 
 
i1Ptr = (int *) fPtr;  
 
What is the value of i1Ptr after this statement executes?   ________  
 
 
++fPtr; 
  
What is the value of fPtr after this statement executes?    ________  
 
 
i1Ptr = i2Ptr; 
 
What is the value of i1Ptr after this statement executes?   ________ 
 
 
i1 = *&*i1Ptr; 
 
What is the value of i1 after this statement executes?      ________ 

 
 
i2 = **&i2Ptr + 1; 
 
What is the value of i2 after this statement executes?      ________  
 

 

Assume each instruction is executed in the order given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

Scratch Paper 
 


