Login name Quiz 4 Name

CSE 131
Signature Winter 2009 Student ID

1. Project I Code Gen — Phase I1.3:
What is the output of the following Reduced-C program:

function : int foo(int & x, int y)
{ Output
int z;
x =y + 5;
y = x + 5;
z = x t+ vy;

cout << x << endl;
cout << y << endl;
cout << z << endl;

return x;

}

function : int main()
{

int a = 5;

int b = 10;

int c;

c = foo(a, b);

cout << a << endl;
cout << b << endl;
cout << ¢ << endl;

return 0;

}

Assume variables a, b, and ¢ in main() are allocated space in main()'s stack frame at memory locations

a %fp-4
b %fp-8
c $fp-12

Write the SPARC assembly instructions for the line

c = foo(a, b);

You can assume all the initializations of the local
variables have been performed. Just write the code
to pass the actual arguments a and b to the function
foo() and store the return value in c.

Assume the formal parameters x and y are allocated space in foo()'s stack frame at memory locations
b4 $fp+68

\% $fp+72

Write the SPARC assembly instructions for the line

return x;

(over)

2. Pick one of the following letters to answer the questions below related to most calling conventions.

A) Caller B) Callee

_ Allocates space for actual arguments
Retrieves return value from return value location
Allocates space for local variables

Copies actual arguments into argument space

Saves %pc into the return address location

Retrieves saved return address for return
Performs initialization of local variables

Saves registers in callee-save scheme

3. Given the following C array declaration short a[4][3];

we would find a[3][1]
a.

mark with an A the memory location(s) where

low memory

Each box represents a byte in memory.

high memory

4. Given the following C function definition

void foo(int a, int b, int c)
{

int d;

short e;

char £f131;

double g;

int h;

/* function body */
}

$fp

low memory

A 4

Show the SPARC memory layout of the stack frame for
foo() taking into consideration the SPARC data type
memory alignment restrictions discussed in class. Fill
bytes in memory with the appropriate local variable and
parameter name. For example, if variable or parameter
name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the variable is an array,
use the name followed by the index number. For
example, some number of p[0]s, p[1]s, p[2]s, etc.
Place an X in any bytes of padding. Use the Sun C
compiler model. Do not allocate unneeded padding
similar to how gcc puts extra padding between local
variables. There may be more memory slots than needed,
so do not feel like you have to fill them all.

