
Login name _________________ Quiz 4 Name ______________________

CSE 131

Signature ___________________ Winter 2008 Student ID __________________

1. Project II – Phase I.1:

Write the SPARC Assembly code that would be generated for the following Reduced-C statement:

 cout << 17 << "World";

Assume x is defined as the first local variable on the stack for some function as:

 float x;

Write the SPARC Assembly code that would be generated for the following Reduced-C statement:

 cout << x;

You can assume the following is available for you to use:

 .section ".data"

intFmt: .asciz "%d"
strFmt: .asciz "%s"

2. Pick of one the following letters to answer the questions below.

 1) Prologue 3) Pre-Call

 2) Epilogue 4) Post-Return

_____ Where local variable space is allocated _____ Where parameter space is allocated

_____ Store return value in %i0 in SPARC subroutine _____ Saves the return address

_____ Performs initialization of local variables _____ Where local variable space is deallocated

_____ Where parameter space is deallocated _____ Retrieves saved return address

_____ Restores caller-save registers _____ Saves callee-save registers

_____ Retrieve return value from %o0 in SPARC subroutine

 low memory

3. Given the following C function definition

void foo(int a, int b)

{

 char c[3];

 short d;

 int e;

 double f;

 int g;

 /* function body */

}

 %fp

Show the SPARC memory layout of the stack frame for

foo() taking into consideration the SPARC data type

memory alignment restrictions discussed in class. Fill

bytes in memory with the appropriate local variable and

parameter name. For example, if variable or parameter

name p takes 4 bytes, you will have 4 p's in the

appropriate memory locations. If the variable is an array,

use the name followed by the index number. For

example, some number of p[0]s, p[1]s, p[2]s, etc.

Place an X in any bytes of padding. Use the Sun C

compiler model. Do not allocate unneeded padding

similar to how gcc puts extra padding between local

variables. There is probably more memory slots than

needed, so do not feel like you have to fill them all.

