
CSE 131 – Compiler Construction

Discussion 5: SPARC Assembly

(The Fun Stuff!)

2/8/2010

2/12/2010

Overview

� Project II Overview

� SPARC Architecture and Assembly

� An Example of Code Generation

Project II Overview

� For Project II, there will be no type checking

� Only syntactically and semantically correct code

will be given to your compiler.

� You will most likely still need the structures you

created in Project I, but need to make sure your

Project I code isn’t printing error messages when

there are none (false positives).

Project II Overview

� So, what is Project II supposed to do?

� You will be generating SPARC assembly code

for a given RC program (creating rc.s)

� Once your compiler outputs an assembly

program, it will be fed into a C compiler to

create the resulting executable (a.out)

SPARC Architecture

� SPARC is a RISC (Reduced Instruction Set

Computer) Architecture

� This means there are a small number of simple instructions

(as opposed to CISC).

� Load/Store Architecture (load-load-compute-store)

� Branching on Condition Codes

� Z (zero), N (negative), C (carry), V (overflow)

� 32 32-bit integer registers (global, local, input, output)

� 32 32-bit floating-point registers

� Sliding Register Window

SPARC Memory

Text

Data

BSS

Heap

Stack

Low

High

� Text – Instructions

� Data – Initialized global & static variables

� BSS – Uninitialized global & static

variables

� Heap – Dynamically allocated memory

� Stack – Stack Frames (local variables and

function parameters)

%fp (Frame Pointer)
Local Vars

Parameters
High

Low � Local variables at negative offset

� Parameters at positive offset

Stack Frame:

SPARC Integer Registers

� Global (%g1 - %g7)

� Available throughout function calls (no sliding)

� %g0 is always 0

� %g1 - %g4 are volatile (temp use only)

� Local (%l0 - %l7)

� Values local to each function (disappear after function
returns)

� Input (%i0 - %i5)

� Input parameters to a function (this is why there is a 6
parameter limit issue)

� %i0 is where to store return value before returning

� %i6 and %i7 are reserved

� Output (%o0 - %o5)

� Output arguments to a function (do right before “call”)

� Once function returns, return result is in %o0

� %o6 and %o7 are reserved

Sliding Register Window

� When main calls foo,
main’s output registers
will become foo’s input
registers.

� Also, as you can see,
foo’s frame pointer is
just main’s stack
pointer.

main

foo

SPARC FloatingPoint Registers

� Floating-point Registers (%f0 - %f31)

� These registers are NOT windowed.

� These will remain intact across function calls within

your code

� These can be changed by other external functions

you call, so don’t leave things in them that you may

need!

Common SPARC Instructions

Set (no 4K restriction):
set 12345, %l0 ! %l0 = 12345

set x, %l0 ! %l0 = addr/mem loc. labeled by x

Move (constants between +/- 4K OK – but use set!):
mov %l0, %o0 ! %o0 = %l0

Simple Arithmetic (add, sub):
add %o0, %o1, %o2 ! %o2 = %o0 + %o1

Increment/Decrement (inc, dec):
inc %l0 ! %l0 = %l0 + 1

Shifting (sll, srl, sra):
sll %o1, 5, %o0 ! %o0 = %o1 << 5

Common SPARC Instructions

Load:

ld [%fp – 4], %i4 ! %i4 = *(%fp – 4)

Store:

st %i3, [%fp – 8] ! *(%fp – 8) = %i3

Compare:

cmp %o0, %o1 ! Sets condition codes based on %o0 - %o1

Branch (bg, bge, bl, ble, be, bne, ba)**:

ble loop2 ! Go to label “loop2” IF prior cmp was <=

nop

Call**:

call foo ! Jumps to subroutine labeled “foo” (saves PC)

nop

** Remember to have a “nop” after a branch or call statement!!!

The Save Instruction

set -(92 + ?) & -8, %g1 ! Where ? = # of bytes of local variables

save %sp, %g1, %sp

� The reason we have the “set” instruction is to avoid the 4K pitfall of just
placing the number in the “save” instruction.

� The 92 comes from:

� 64 bytes for in/local registers

� 4 bytes for returning a struct by value (64 + 4 = 68; start of params)

� 24 bytes for first 6 parameters (%i0 - %i5)

� What if you had a value parameter to foo that needed to be sent as a
reference parameter to baz?

st %i0, [%fp+68] ! Put value of parameter in memory parameter location

add %fp, 68, %o0 ! Put address in output argument to baz.

Assembly Sections

� .text – Instructions

� .data – Data (Initialized global/static vars)

� .rodata – Read-only Data

� .bss – BSS (will be automatically set to 0)

� You can switch between the different sections

throughout the code (just don’t forget to align!)

Global Variables – Method 1

� RC code:

int x, y;

� Assembly code:
.global x, y

.section ".data"

.align 4

x: .word 0 ! 0 to initialize to zero

y: .word 0 ! 0 to initialize to zero

Global Variables – Method 2

� RC code:

int x, y;

� Assembly code:

.global x, y

.section ".bss" ! Will auto initialize to zero

.align 4

x: .space 4 ! Same as .skip

y: .skip 4 ! Same as .space

Global Variables

� Note that for all these methods shown, we assumed
initializing to 0.

� If you wanted to initialize a global variable with
another value, you need to either use the ".data" method
(Method 1), or use the ".bss" methods (Method 2) with
initialization code at the beginning of main() to set the
initial value into those locations in the BSS (similar to
what will need to be done with initializing local
variables). If you use the bss-code initialization method,
make sure you have guards to only initialize once, in
case you have recursion.

Local Variables

� One important thing we will need to know about

variables will be their base and offset in memory.

� For example, if X was at %fp – 8, you would want

to store the following in X’s VarSTO:

X.base = "%fp"

X.offset = "-8"

X.isLocal = true

� Now, when you see X used in the code, you know

to load from base+offset (i.e., [%fp-8])

GlobalVariables

� The base of a global variable is always its name. To get this name into a

register, we need to use the “set” command.

� It may be beneficial to include a flag in your STO class to designate

whether an STO is a global or not. If the STO is not local, you’ll use the

set instruction instead of calculating the offset based on the frame

pointer (%fp). (Note that we will be using another flag, isGlobal, later).

X.base = "x"

X.offset = "0"

X.isLocal = false

� Now when you see X used in the code, you’ll know that you have to set

it’s label into a register to get it’s address.

Global & Local Variable
Examples

int x;

function : void main() {

int y;

}

.section ".data"

.align 4

.global x, main

x: .word 0

.section ".text"

.align 4

main:

set SAVE.main, %g1

save %sp, %g1, %sp

set x, %l0 ! Loads the address of x into %l0

ld [%l0], %l1 ! Put the value of x into %l1

st %l2, [%l0] ! Put the value in %l2 into x

add, %fp, -4, %l3 ! Put the address of y into %l3

ld [%l3], %l4 ! Put the value of y into %l4

st %l5, [%l3] ! Put the value in %l5 into y

ret

restore

SAVE.main = -(92 + 4) & -8

GlobalVariables

� Note that all of our global variables have been marked

global by the “.global” directive. This makes the

symbol visible to other files.

� All global variables and functions that are defined in

the file and are not static must be declared as global.

“main” must also be declared as global.

� You should add a flag to your STOs, isGlobal, to mark

whether or not a symbol should be put in the global

directive.

Function Calls

� In RC:

foo(5, 9);

� In Assembly:

set 5, %o0

set 9, %o1

call foo

nop

Useful Constants

� Consider always defining the following useful

constants:
.section ".rodata"

endl: .asciz "\n"

intFmt: .asciz "%d"

boolT: .asciz "true"

boolF: .asciz "false"

Note: Always use .asciz instead of .ascii, since the former will automatically

null-terminate your ASCII string.

Outputting Stuff

� In RC:

cout << 5;

� In Assembly:

set intFmt, %o0 ! Assuming you have defined this

set 5, %o1

call printf

nop

Outputting Stuff

� In RC:
cout << 5.75;

� In Assembly:
.section ".data"

.align 4

tmp1: .single 0r5.75

.section ".text"

.align 4

set tmp1, %l0

ld [%l0], %f0

call printFloat

nop

A Large Example

� Given this RC Code, what is the assembly?

int x = 4;

int y;

int z = x;

const int c = 5;

function : int main() {

y = 11;

z = c - y;

z = z + x;

cout << z << endl;

return -2;

}

A Large Example

!----Global Variables----

.section ".data"

.global c, z, y, x

.align 4

c: .word 5

z: .word 0

y: .word 0

x: .word 4

!----Default String Formatters----

.section ".rodata"

intFmt: .asciz "%d"

endl: .asciz "\n"

!----Main----

.section ".text"

.align 4

.global main

A Large Example
main:

set SAVE.main, %g1

save %sp, %g1, %sp

! init z, modify to support recursion

set x, %l0

ld [%l0], %l1

set z, %l0

st %l1, [%l0]

! y = 11

set y, %l0

set 11, %l1

st %l1, [%l0]

! z = c – y

set c, %l0

ld [%l0], %l1

set y, %l0

ld [%l0], %l2

sub %l1, %l2, %l1

st %l1, [%fp-4] ! tmp1

ld [%fp-4], %l1

set z, %l0

st %l1, [%l0]

! z = z + x

set z, %l0

ld [%l0], %l1

set x, %l0

ld [%l0], %l2

add %l1, %l2, %l1

st %l1, [%fp-8] ! tmp2

ld [%fp-8], %l1

set z, %l0

st %l1, [%l0]

! cout

set intFmt, %o0

set z, %l0

ld [%l0], %o1

call printf

nop

set endl, %o0

call printf

nop

set -2, %i0 ! return -2

ret

restore

! 8 bytes tmp

SAVE.main = -(92 + 8) & -8

Where do you do this?

� There are many ways to output your assembly code.

� Try to be as organized as possible – don’t just throw some

println statements all over your CUP and MyParser files.

� Consider making a separate class that just deals with

outputting code

� Evan (a previous tutor) provides an excellent idea for a possible

class: http://www.cse.ucsd.edu/users/ricko/CSE131/AssemblyCodeGenerator.html

� Make sure to use ample formatting (tabs, blank lines, comments), as

this will help you greatly with debugging.

What to do Next!

1. Fix Project I – ensure there are no errors generated.

2. Familiarize yourself with SPARC assembly.

3. Plan out how you want to structure your project –

good planning leads to an easier design in the long

run.

4. Start on Phase 1.

5. Come to lab hours and ask questions.

Topics/Questions you may have

� Anything else you would like me to go over

now?

� Anything in particular you would like to see

next week?

