
CSE 131 – Compiler Construction

Discussion 3: Project 1 – Wrap-up

01/22/2010

01/25/2010

Overview

� Arrays

� Structs

� Pointers

� Function Pointers

� Type Casts

� Address-Of

Array Declaration

� Syntax:

type[index] varName; (int[4] myArray;)
typedef type[index] ALIASNAME; (typedef int[2] ARR;)

� What to check in the declaration:

� Index is an int

� Index > 0 (known at compile time � ConstSTO)

� Note that the only way to have an array of array is by using a
typedef alias for the inner array (you can only use one [] type
modifier per variable/type declaration)

Array Usage

� Syntax:

myArray[index];
myArray[index][index];

� What to check:

� The designator before the [] must be of Array or Pointer

type

� index must be equivalent to int

� If index is a constant, you must check the bounds (this only

applies when the designator before the [] is an Array type)

Implementation?

� How can one encapsulate the information from
the array declaration for later use?

� Remember the Type Hierarchy:

� One possibility is to store information such as
elementType, dimensionSize.

� In order to do this, you have to add these fields
into the ArrayType definition and provide ways to
set and read the information from them.

Further Analysis of Arrays

int[20] myArray;

int myInt;

int * myIptr;

const int c = 5;

function : void main() {

myArray[5+c] = myArray[6-c]; // bounds check

myArray[myInt] = 15; // no bounds check here

myArray = 10; // error, non-modifiable L-val

myIptr = myArray; // OK, since array id is ptr

myIptr[c] = 100; // no bounds check since ptr

}

Struct Declaration

� Syntax:

structdef MYSTRUCTALIAS {
int foo;
float baz;
MYSTRUCTALIAS* nextPtr;
bool foo;
function : float getBaz() { return this.baz; }

}; // This is the struct definition (similar to a typedef)

� What to check in the declaration:
� Check for duplicate fields (field mySVar.foo in this case)

� If a field is duplicated multiple times, an error is reported for each
duplicate instance (this includes member functions)

Struct Usage

� Syntax:

myStruct.myField

� What to check:

� myStruct must be of type StructType

� myStruct must contain the field myField, in this
case

� After checking, your result will be of the type of
myField.

Further Analysis of Structs

structdef REC {

float a, b;

};

REC myRec1, myRec2;

function : void main() {

myRec2 = myRec1; // OK, myRec2 mod l-val

myRec2.b = 3.6; // assign 3.6 into b field

myRec2.a = myRec2.b; // assign b field into a field

}

Pointer Declaration

� Syntax:

int** x; // pointer to pointer to int
typedef float* PTR; // alias PTR is a pointer to float
PTR y; // y is a pointer to float
PTR* z; // z is a pointer to pointer to float

Pointer Usage

� Syntax:
*myPtr = 3; // pointer dereference
myStructPtr->myStructFunction(23); // arrow operation
new myPtr;
delete myPtr;
myPtr = NULL;
if(myPtr != NULL && myPtr != myPtr) { /* stuff */ }

� What to check:
� For a dereference, only things of PointerType can be dereferenced.

After a dereference, we need to provide an object of the Type
pointed to that is ADDRESSIBLE!

� For an arrow operation, the left-side must be a variable of some
pointer to struct. The right-side must be some field/function within
the struct.

� For new/delete, you must check to see if the argument is also of
PointerType.

Further Analysis of Pointers

typedef float* FPTR;

FPTR x, y;

float z;

function : void main() {

new x; // like calloc, no actual allocation in Proj 1

*x = 7; // assign value of 7 into where x is pointing

y = x; // assign y to point where x points

z = *y; // z = 7, if this were in runtime for Proj 2

delete x; // like free, no actual deallocation in Proj 1

}

Recursive Structs

� Recursive types will have at least one pointer
type in a cycle.

� When you encounter a struct alias declaration
(structdef), you want that TypeSTO to be in
scope immediately, even if you are not
finished with the declaration (i.e., it isn’t
fully complete, but can still be referenced
from the Symbol Table).

Recursive Struct Examples

structdef LINKEDLIST {

LINKEDLIST * next;

int data;

};

function : void main() {

LINKEDLIST * first;

new first;

first->data = 55;

new first->next;

first->next->data = 44;

first->next->next = first;

}

Recursive Structs

� Think more about this – it is an important

concept (not just for this class).

Refresher on Type Equivalence

� Remember:

� All types use structural equivalence (except
structs)

� All typedefs/structdefs use name equivalence to
resolve down to the lowest-level type

� Structs-level operations (e.g. assignment,
equality, and inequality) use name equivalence.
All structs are defined with structdef

Illustrative Example

typedef int INTEGER;

typedef int MONTH;

INTEGER i;

MONTH m;

float r;

structdef REC1 { float a; };

structdef REC2 { float a; };

typedef REC1 REC3;

REC1 r1;

REC2 r2;

REC3 r3;

function : int f(REC1 &a) { /* stuff */ }

float[5] a1;

int[5] a2;

function : int g(float[5] &a) { /* stuff */ }

int* p1;

INTEGER* p2;

REC1* p3;

REC2* p4;

REC3* p5;

function : int main() {

i = m; // okay, assignable - name equivalent

i = r; // error, not assignable - float cannot be assigned to int

r = i; // okay, assignable - int can be assigned to float (coercion)

f(r1); // okay, same type/equivalent

f(r2); // error, not name equivalent

f(r3); // okay, same type/name equivalent

g(a1); // okay, structurally equivalent

g(a2); // error, not assignable - not structurally equivalent

a1 = a1; // error, arrays are not modifiable L-vals

r1 = r1; // okay, name equivalent and structs are mod L-vals

r1 = r2; // error, not name equivalent

r3 = r1; // okay, name equivalent and structs are mod L-vals

p1 = p2; // okay, structurally equivalent

p3 = p4; // error, types pointed to (structs) are not name equivalent

p3 = p5; // okay, structurally equivalent

return 0;

}

Array/Struct Arguments

� Remember that you can pass both Arrays and

Structs to functions. For Project I, the

following applies:

� Structs can be passed only by reference (&)

� Still will depend on name equivalence.

� Arrays can be passed by reference to array

parameters in functions, or be passed by value to

pointer parameters in functions

� You use structural equivalence for checking

compatibility.

Function Pointers

� Function pointers are a specific and unique Type.

� They DO NOT require the * to dereference them. Instead, they
are dereferenced implicitly by having parenthesis with optional
arguments (i.e., a function call).

� But, they do use the assignability and comparison (==/!=) rules
like normal pointers.
� Thus, NULL can be compared to a function pointer, as well as assigned

to it.

� Other functions and function pointers can be assigned to function
pointers by specifying the identifier without the parenthesis.

Function Pointers Example

typedef funcptr : int (int x, int y) MYPTRALIAS;

MYPTRALIAS myPtr1, myPtr2;

function : int addition(int x, int y) { return x + y; }

function : int subtraction(int x, int y) { return x - y; }

function : int main() {

if (myPtr1 == NULL) {

myPtr1 = addition;

}

cout << myPtr1(4, 6) << endl;

myPtr2 = subtraction;

cout << myPtr2(5, 2) << endl;

myPtr2 = myPtr1;

cout << myPtr2(5, 2) << endl;

myPtr2 = NULL;

return 0;

}

Type Casts

� Type casts are pretty straightforward

� Take the STO operand and return an appropriate

STO (i.e. ExprSTO or ConstSTO) with the type

specified in the type cast.

� Some work for casting constants (need to

convert the value of the constant

appropriately)

� The result of a type cast is always an R-value

Address-Of Operator

� Simply take the operand and make a pointer

to that type. This should be an ExprSTO,

which is set to be an R-value.

� Note: if you de-reference the result of an

Address-Of, the result of the de-reference will

become a modifiable L-value, even if the

original object was not.

Address-Of Examples

int x, y;

int *z;

const int w = 77;

z = &x; // &x in this example is simply an R-val

&x = NULL; // Error, since not a modifiable L-val

y = *&x; // *&x is essentially just x, so OK.

*&x = y; // The * reverses the &x, making it a modifiable L-val

*&w = y; // The * reverses the &w, making it a modifiable L-val,

// even though w was originally a constant

&*z = z; // Error, result of address-of is not a modifiable L-val

Address-Of Examples

function : int foo() { return 0; }

typedef funcptr : int() MYFP;

MYFP MyFuncPtr;

MyFuncPtr = foo;

MyFuncPtr(); // this will be a function call to foo!

MYFP * MyFuncPtrPtr;

MyFuncPtrPtr = &foo; // Error, since ‘foo’ is constant R-val (name of function)

MyFuncPtrPtr = &MyFuncPtr; // Allowed

(*MyFuncPtrPtr)(); // this will be a function call to foo!

Function Overloading
(Extra Credit)

function : void foo (float x) …

function : void foo (int x) …

function : void foo (int x, float y) …

function : void foo (float x, int y) …

function : int main() {

foo(1); // maps exactly to second one

foo(1.7); // maps exactly to first one

foo(4, 8.8); // maps exactly to third one

foo(5, 6); // error, no perfect match

foo(1, 2, 3); // error, no perfect match

return 0;

}

Implementation

� The starter code currently places a FuncSTO
onto the Symbol Table for each procedure,
and uses the procedure name as the unique
identifier.

� Here are two possible ways to allow
overloading:

� Name Mangling

� Function Lookup Table

Name Mangling

� One can mangle function names to incorporate

the parameters:

� foo(float x, int y) can become: foo_float_int in the

Symbol Table

� When you call foo(3.2, 7), you can lookup the

FuncSTO by searching for “foo_float_int”

Function Lookup Table

� Create some kind of table (hash, etc) that stores
all functions of the same name.

� When you look that name up (say foo), you will
get a Vector of all the matches to the name, but
the objects will differ by the parameter types.

� Furthermore, you can make the lookup
incorporate the arguments in a call and return
the single matching procedure if there is one.

What to do Next!

1. Finish up Project I!

2. Write more test programs to verify
correctness.

3. Come to lab hours and ask questions.

4. After everything seems to be working,
consider working on the Extra Credit.

Topics/Questions you may have

� Anything else you would like me to go over

now?

� Anything in particular you would like to see

next week?

