
Login name _________________ Quiz 2 Name ______________________ 

CSE 131B 

Signature ___________________ Spring 2006 Student ID __________________ 
 

1. Static vs. Dynamic Scoping.  Consider the following C-like program: 

 
int x = 0; 

 

int f () { return x; } 

 

int g () { int x = 1; return f(); } 

 

int main()  

{  

  if ( input() > 5 )  /* input() reads input from the user. */ 

    output( g() ); /* output() prints out a value. */ 

  else 

    output( f() ); 

} 

 

Fill in the table of what value gets printed based on the user input and whether the language uses static or 

dynamic scoping. 

 

Input Static scoping Dynamic scoping 

7   

3   

 

 

2. Structural vs. Name Equivalence 

 
Using the following type and variable definitions, define the variables that can satisfy 

the specified properties. If no such variable can exist, state "does not exist". You may 

not define other types; use only the types defined below. 

 

TYPE rec = RECORD x : INTEGER; END; 

TYPE rec2 = rec; 

TYPE ptr = POINTER TO INTEGER; 

TYPE ptr2 = ptr; 

VAR a : rec; 

VAR b : ptr; 

 

1) Define a variable c that is strict name equivalent to a: 
           

 

2) Define a variable c that is loose name equivalent to b, but not strict name equivalent 
to b: 

           

 

3) Define a variable c that is loose name equivalent to a, but not structural equivalent 
to a: 

           

 

4) Define a variable c that is structural equivalent to b, but not (loose or strict) name 
equivalent to b: 

           

 



3. Type Inference.  Consider the following Oberon program: 

 
CONST a = 5 _Op1_ 7;  
CONST b = 5 _Op2_ 7;  
CONST c = TRUE _Op3_ FALSE;  
VAR x : INTEGER;  

VAR z : BOOLEAN;  

BEGIN  

  IF ( a ) THEN  

    RETURN 1;  

  END;  

  x := b;  

  z := c; 

  RETURN 0;  

END.  

 

For _Op1_, _Op2_, and _Op3_, list what operators are valid (i.e., cause no compile errors). The available 

operators are listed below. Two ops have two possible operators; one op just one.  
  =   AND   *   >= 
 

_Op1_: ____________________________  

 

_Op2_: ____________________________  

 

_Op3_: ____________________________ 

 

 

3.  The C language specifies all types use ___________________ equivalence except for ________________. 

 

Briefly state what makes a definition different from a declaration. 

 

 

 

What is the only allowable type for a struct/record data member in a recursive type definition for a type named 

struct fubar? 

 

 

 

What two operators in our Nano-Oberon project result in a modifiable l-val when evaluated in an expression? 

 

 

 

In languages like C++ and Java, an instance method definition has access to an identifier known as this. 

a) What does this refer to? 

 

 

b) How does this get set to what you answered in a) above? 

 

 

 


