
CSE 131 – Winter 2010

Compiler Project #1 -- Semantic Analysis

Due Date: Friday, February 5, 2010 @ 11:59pm

Disclaimer

This handout is not perfect; corrections may be made. Updates and major clarifications will be

incorporated in this document and noted in the Project Updates section of the Moodle discussion

board as they are made. Please check for updates regularly.

Note about Turn-in

Please refer to the turn-in procedure document on the website for instructions on the turn-in

procedure. IMPORTANT: Remove all debugging output before you turnin your project.

Failure to do so will result in a very poor score.

Background

In this assignment we will implement the semantic checker component of our compiler.

Semantic checking involves storing information in a symbol table (mostly during a declaration)

and then accessing that information (mostly during a statement) in order to verify that the input

conforms to our semantic rules. For the purposes of this assignment, we have defined a new

language called RC (reduced-C). The language is similar to a somewhat watered-down version

of C with some twists here and there. The project below is divided into 4 phases. The intent here

is to give you an indication of (roughly) how long it should take for parts of the project to be

completed, as well as show the grading breakdown. It is implied that you implement the early

phases before the later ones.

Error Messages

As in all compilers, the error messages must be precisely specified. These messages are provided

in ErrorMsg.java -- do NOT modify these messages and do NOT create your own. That said,

you should spend much more time worrying about scoping and typing.

Note that in keeping with previous conventions, all error messages described below are to be

printed to standard output, NOT standard error. All error messages will be preceded by a line of

text specifying the current filename (this is already done by the starter code):

Error, "file.rc":
 error message

Note that the filename is on a separate (preceding) line from the error message.

If you want to enable line numbers in error messages for debugging purposes, do a

 make debug

Multiple and cascading errors

While a single statement may contain many errors, it is difficult to specify exactly how these

errors are reported. To simplify your task:

1. You should report only the first error occurring (first error encountered in the parse) in

any simple statement (e.g. assignment) or any part of a multi-part statement (e.g. the test

of a while statement), ignoring any further errors until the end of that statement or

statement part.

If a check has a list of multiple bullet points to check, check them in the order of the

bullet points. Report only the first error occurring in this list. Another way to tell which

error to print first is to check the order of error messages listed in ErrorMsg.java. For

example, the expression ++true has two errors (operand is not a numeric type, and

operand is not a modifiable lval), but only the first one should be reported (not a numeric

type).

Note: For some simple statements, it is not easily possible to avoid printing multiple

errors. One such expression is *a + *a, where the type of variable a is not a pointer
type. Such expressions will not be tested.

2. No variable, function, or type whose declaration contained an error will be used in the

remainder of any test case. No identifier, having been declared erroneously once, will be

re-declared.

Printing types in errors

Many error messages include a type name (%T). The printed forms of arrays, pointers, structs,

and typedefs should obey the following guidelines.

1. Printing array types

Printed array types include the dimension size in brackets
without any spaces (e.g. "int[10]" or "bool[2]").

2. Printing pointer types

Printed pointer types include the asterisk(s) without any spaces
(e.g. "int*" or "float***"). Furthermore, when combined with
arrays, the array dimension occurs after the asterisks (e.g.
"int*[4]" for a variable that is an array of 4 integer pointers).
The type of the NULL keyword should be printed as "NULL".

3. Printing typedefs

Variables defined using a typedef type should be printed using
the name of the typedef, e.g.

 typedef int MYINTTYPE;
 MYINTTYPE x;

should print "MYINTTYPE", not "int", when referring to variable
"x".

4. Printing structs

Struct definitions are only done via a "structdef" (a glorified
typedef for structs). The only way a variable can be of a struct
type is via the usage of the struct’s identifier in the
declaration. Thus, structs follow the same rule as typedefs
above, where the name of the struct definition is printed, e.g.

 structdef MYSTRUCT {
 float field1, field2;
 };
 MYSTRUCT y;

should print type "MYSTRUCT" when referring to variable "y".

5. Printing void types

When printing the type of a function call’s return value, if the
function was declared as void, you should print type "void".

6. Printing error types

If an error type somehow surfaces in an error message which
requires its type to be printed, print "ERROR".

What We're Not Testing or Using in Test cases

• The char data type

• Nested function declarations

• The cin and cout built-in functions (but we will call these in the next project).

• The static keyword for constants/variables (but we will use this in the next project).

• Constant function pointers and comparisons of function pointers to one another

• Multidimensional arrays (we ARE testing arrays of arrays, which is shown below)

 typedef int[6] MYARR;
 typedef MYARR[4] MYARR2;
 MYARR2 myArrayOfArray;

 function : int main() {
 myArrayOfArray[3][5] = 4; // tested – assignment to last element
 return 0;
 }

The Assignment

Your task for this assignment is to implement the following semantic checks. Note that

frequently the terms “equivalent” and “assignable” are used – these will be discussed in more

detail in lecture and in Discussion Section. For convenience, we generally use the term

equivalent to mean equal types. The term assignable includes the class of equivalent types, as

well as any implicit type coercions allowed. For this project, the only implicit type coercion is

promoting an integer to a float. The following table shows some examples:

Term for Types Types

Equivalent:
Generally means equal types

int �� int

float �� float

bool �� bool

int** �� int**

int[5] �� int[5]

Assignable (i.e., implicitly coercible):
Includes equivalent, as well as implicit type

coercions

Everything listed in equivalent

int � float (note: only in one direction)

Note: type void is not equivalent to anything (even itself). Using an object of type void in any

expression should result in an error.

Additionally, the terms “modifiable L-value”, “non-modifiable L-value”, and “R-value” are used

frequently. L-values are object locaters that are allowed to be on the left-side of an assignment

statement. The difference between a modifiable L-value and a non-modifiable L-value is that the

latter is not modifiable. One common point of confusion is that the statement “is not a modifiable

L-value” is *not* the same as saying “is a non-modifiable L-value”. The difference is the former

means something is not both addressable and modifiable, while the latter means it is addressable,

but not modifiable. Another point of confusion is that something that is “not modifiable” is

not necessarily a constant value. The following table shows the definitions and examples:

Terms for STOs Definition Examples

Modifiable L-value Addressable and modifiable Variables and results of expressions

with *, ., ->, and []

Non-modifiable L-value Addressable, but not

modifiable

Declared constants (e.g. const int x =

5) , and the name of an array

R-value Neither addressable nor

modifiable

Results from arithmetic operations

(e.g. x+y), constant literals, the name

of a function (which is a function

pointer), and results of address-of

and type casts

For the purposes of this assignment, the following rules apply:

• All types (except structs) use structural equivalence.

• All typedefs/structdefs use name equivalence to resolve down to the lowest-level type.

• Struct-level operations (e.g. assignment, equality, and inequality) use name equivalence.

All structs are defined with structdef.

• Array identifiers are non-modifiable L-values (they are a pointer to the first element in

the array).

• Struct identifiers are modifiable L-values.

Here is an example illustrating some of these points:

typedef int INTEGER;
typedef int MONTH;

INTEGER i;
MONTH m;
float r;

structdef REC1 { float a; };
structdef REC2 { float a; };
typedef REC1 REC3;

REC1 r1;
REC2 r2;
REC3 r3;

function : int f(REC1 &a) { /* stuff */ }

float[5] a1;
int[5] a2;

function : int g(float[5] &a) { /* stuff */ }

int* p1;
INTEGER* p2;
REC1* p3;
REC2* p4;
REC3* p5;

function : int main() {

 i = m; // okay, assignable - name equivalent
 i = r; // error, not assignable - float cannot be assigned to int
 r = i; // okay, assignable - int can be assigned to float (coercion)

 f(r1); // okay, same type/equivalent
 f(r2); // error, not name equivalent
 f(r3); // okay, same type/name equivalent

 g(a1); // okay, structurally equivalent
 g(a2); // error, not assignable - not structurally equivalent

 a1 = a1; // error, arrays are not modifiable L-vals

 r1 = r1; // okay, name equivalent and structs are mod L-vals
 r1 = r2; // error, not name equivalent
 r3 = r1; // okay, name equivalent and structs are mod L-vals

 p1 = p2; // okay, structurally equivalent
 p3 = p4; // error, types pointed to (structs) are not name equivalent
 p3 = p5; // okay, structurally equivalent

 return 0;
}

When a check fails, your compiler is expected to keep checking subsequent expressions or

statements. However, your compiler should not crash or terminate on any of the semantic checks

in this project.

Note that the time periods for the various phases are estimates to help you plan your time -- they

are not due dates. The percentages are also approximate and are provided to help gauge the

impact of each phase.

Phase 0 (1st week)

1. Edit the grammar file to support new rules.

Here are the rules you will need to add to your grammar:

To allow for the

 new x;
and
 delete x;

we add the following rules:

 NewStmt -> T_NEW Designator T_SEMI
 DeleteStmt -> T_DELETE Designator T_SEMI

and associated terminal/non-terminal symbols in the grammar file (rc.cup) and lexer file

(Lexer.java). Once this is solved, an example program (named new.rc in the starterCode

directory) should run without syntax errors.

2. There are two bugs in the starterCode.

1. The method access() in SymbolTable.java performs a bottom-up FIFO search of

its scope stack (class Stack is a Vector [extends Vector] -- terrible design

paradigm -- should use Composition and not Inheritance, but that is another

topic). The scope stack should be searched from the top-down as a LIFO.

A search for an identifier with both global and local scope (global variable x and

local variable x) will incorrectly find the global scoped entry first instead of

correctly finding the local scoped entry first.

Fix the method SymbolTable.access() so it does the right thing. An example

program (named scope.rc) is provided to illustrate the problem.

2. RC does not currently allow unary plus and minus expressions (e.g. -x as in 2 *

-x), but the grammar includes a rule, UnarySign, to allow this. Enable this

expression by defining the UnarySign rule.

We will use UnarySign with simple numeric types/constants/expressions only (-

intvar or -5 or +17) and not with non-numeric types (-false or +NULL) so you

do not need to check for illegal uses of UnarySign.

Phase I (40% -- 1 1/2 weeks)

Declarations, statements and expressions consisting of variables and literals of a basic type

(int/float/bool), functions (global), and exits.

Check #1 Detect a type conflict in an expression -- that is, expressions of

 x OP y

where the types of either x or y are incompatible with OP. The valid types (and resultant types)

are as follows:

• For the T_PLUS, T_MINUS, T_STAR, T_SLASH operators, the operand types must be

numeric (equivalent to either int or float), and the resulting type is int when both

operands are int, or float otherwise.

• For the T_MOD operator, the operand types must be equivalent to int, and the resulting

type is int.

• For the T_LT, T_LTE, T_GT, and T_GTE operators, the operand types must be numeric,

and the resulting type is bool.

• For the T_EQU and T_NEQ operators, the operand types must be either BOTH numeric,

or BOTH equivalent to bool, and the resulting type is bool.

• For the T_OR, T_AND, and T_NOT operators, the operand types must be equivalent to

bool, and the resulting type is bool. Note: T_NOT is a unary operator.

• For the T_AMPERSAND, T_CARET, and T_BAR bitwise operators, the operand types

must be equivalent to int, and the resulting type is int.

In Phase I, the operands are restricted to simple variables of basic type (int, float, bool) and

literals, including the UnarySign (this will be extended in the later phases).

Note: The result of any arithmetic or logical operation is an R-value.

Check #2 Detect a type conflict in a pre/post increment/decrement -- that is, for expressions like

 y = x++;
 w = x++ + --y;

an error should be generated if

• the type of the operand to the increment or decrement is not of type int or float (numeric).

• the operand is not a modifiable L-value

The resulting object should be marked as an R-value.

Note: in Phase I, only int and float types are considered valid. This will be extended in the later

phases to allow pointer types as well (hence the error message including pointers).

Check #3a Detect an illegal assignment -- that is, an assignment of the form

 myA = Expr

where myA is not a modifiable L-value. Some examples (most of which are implemented later in

this project) include typedefs, structdefs, function names, function calls, constants (literals or

declared), array designators, results of the address-of operation, and results of type casts. Later in

the project, resulting expressions from *, ., ->, and [] will be incorporated as valid modifiable L-

values.

Note: The case where myA is a type name is already caught by the starter code as a syntax

error and does not need to be modified (please leave the message that is originally printed

in this case intact).

Note: Expr will only be either simple arithmetic expressions (including UnarySign) or another

assignment expression for this check. More complicated expressions (including pointer

dereferences) will be done in phases II and III. The expression resulting from an assignment

should be marked as an R-value.

For a chain of assignment expressions in a statement, only report the first error encountered due

to an illegal assignment, ignoring any subsequent illegal assignments in the same expression. For

example, the expression below should print only one error, resulting from trying to assign 4 = 2.

The subsequent illegal assignments to the left of the chain should not produce an error. This is

because the assignment operator is right-associative.

 1 = 3 = 4 = 2;

Note: A partially functional error check already exists in MyParser.java in the

DoAssignExpr() method. You need to extend this check to display the proper message.

Check #3b Detect a type conflict in an assignment -- that is, an assignment of the form

 x = y

where the type of y is not assignable to the type of x.

Check #4 Detect a type conflict in an if/while statement, that is, statements of the form

 if (Expr) { ... }

 while (Expr) { ... }

where the expression is not equivalent to bool.

Check #5 Detect an illegal function call. Errors should be generated if

• The number of arguments differs from the number of expected parameters,

• A parameter is declared as pass-by-value (default) and the corresponding argument's type

is not assignable to the parameter type,

• A parameter is declared as pass-by-reference (using the &) and the corresponding

argument's type is not equivalent to the parameter type,

• A parameter is declared as pass-by-reference and the corresponding argument is not a

modifiable L-value.

If there is a problem with multiple arguments in a single function call, then an error should be

generated for each such argument, in the order that the arguments are passed.

Functions can have any basic return type (int, float, bool), or void. If the function call is used

within an expression, the function’s return type should be used to do semantic checking within

the expression. For example:

 function : bool foo() { return false; }
 function : void bar() { /* do nothing */ }
 function : void main() {
 int x;
 x = x + foo(); // error: bool incompatible with + operator
 x = bar(); // error: void not assignable to int.
 }

Note that struct-member functions will be tested, and overloaded functions are extra credit.

Check #6a Detect an illegal return statement -- there are two forms of illegal statements you

must detect:

 return; // Where no Expr is specified and the return type is not void

 return Expr; // Where Expr is not assignable to the return type
 // (including if function was defined as void)

Check #6b Detect a missing return statement.

For functions not declared with void return type, at least one return statement (legal or illegal)

must appear at the top level (i.e. not within an if or while statement).

Check #7 Detect an illegal exit statement -- that is, statements of the form

 exit(Expr);

where Expr is not assignable to an int.

Phase II (40% -- 1 1/2 weeks)

Aliases, constant folding, arrays, break/continue, and structs, in addition to Phase I tasks.

Check #8 Detect an illegal constant/variable initialization -- that is, for a declaration of the form

 const Type c = ConstExpr;
 Type x = Expr;

• The value of ConstExpr is not known at compile time.

• The type of ConstExpr or Expr is not assignable to Type.

Constant folding is required and will be checked. When dealing with constant folding, if an

arithmetic exception occurs (e.g. dividing by zero), the resulting constant value is irrelevant

(since the object will now be an ErrorSTO) and the appropriate constant folding error message

should be displayed. In this case, do not print the first error message listed above (constant

initialization value not know at compile time).

There are no array or struct initialization methods, so any attempt to initialize an array or struct

should respond with the appropriate check #8 error message.

Check #9 Extend all previous checks to allow for operands consisting of

• Named constants (example: const int Zero = 0)

• Variables of typedef types (example: typedef int MYINT; MYINT x;)

In other words, the rules for the previous checks are the same, but in Phase II we allow more

complex expression operands. The following is a very simple example:

 typedef int INTEGER;

 INTEGER a;
 INTEGER b;

 const int c = 2 + 3 * 0 - 1;

 function : int main() {
 a = b + c;
 return a;
 }

Check #10 Detect an illegal array declaration.

Given a type declaration such as

 Type[Index] List1;

an error should be generated if

• the type of the index expression (Index in this case) is not equivalent to int

• the value of the index expression is not known at compile time (i.e., a constant).

• the value of the index expression is not greater than 0.

Note: Type can be another array type or a typedef
 typedef float[10] ARR;

 float[10] a;
 ARR b;
 ARR[2] c; // array of array

Check #11 Detect an illegal array usage.

Given a designator such as

 MyList [nIndex]
or
 MyList [nIndex][nIndex]
or
 MyList [nIndex] ... [nIndex] // Any number of [nIndex]s

an error should be generated if

• The type of the designator preceding any [] operator is not an array or pointer type.

• The type of the index expression (nIndex in this case) is not equivalent to int.

• If the index expression is a constant, an error should be generated if the index is outside

the bounds of the array (does not apply when the designator preceding the [] is of pointer

type). We will be testing expressions like:

 a[55] or a[0-99] or a[x + 10] or a[c] or a[c+5] or a[-9]
 a[5][7] or a[-9][0] or a[x+4][c+2] or a[-c][5+3]

where c is a constant. If the index expression is a constant expression, you need to check

that it is within the range 0 – (#-of-elements – 1) for that dimension. If it is not a constant

expression (e.g., it is an integer variable), do not check its range (this will be done in

Project II at run time). Obviously, if the designator preceding the [] is a pointer type, no

bounds checking will occur since the size is unknown.

Note: Extend all previous checks to include array designators in expressions (such as x[i] or

y[i][j]).

 const int cc = 1;
 typedef float[10] ARR;

 float[10] a;
 ARR b;
 ARR[2] c; // This results in an array with 2 rows, 10 cols
 float * d;

 c[1][9] = a[2];
 b[b[b[b[2] - cc] + cc] - 1] = c[1][9];
 a[2] = d[0];

Note: Arrays will be passed-by-reference to array parameters of functions. Additionally, arrays

will be passed-by-value to pointer parameters of functions. You will still need to check that the

argument and parameter types are compatible.

Check #12 Detect an illegal break or continue statement -- that is, statements of the form

 break;

 or
 continue;

that is not within the body of a while loop.

Check #13a Detect an illegal struct declaration -- the same identifier twice in the same struct

declaration.

If a field is duplicated multiple times, an error is reported for each duplicate instance:

 structdef MYS {
 int x, y;
 int x; // duplicate id x, error #1
 int z, x; // duplicate id x, error #2
 function : void y() {} // duplicate id y, error #3
 function : void f(int &x)
 { x = x + 1; } // No error with x (inner scope)
 function : void foo() {}
 function : void foo() {} // duplicate id foo, error #4
 };

Note: struct-member function names are in the same namespace as the other variable

identifiers within the struct. A function name that is the same as a field or another function

within the struct should result in a duplicate field error as well.

Check #13b Detect an illegal struct declaration -- invalid recursive struct definition

An error should be generated for invalid recursive struct definitions like the one below:
 structdef MYSTRUCT {
 MYSTRUCT myRecursiveStruct;
 };

Note: Recursive struct definitions using a pointer to the struct type are valid (should not

produce an error) and will be tested:

 structdef MYSTRUCT {
 MYSTRUCT* myRecursivePtr;
 };

Check #14a Detect an illegal struct usage.

Given a designator such as

 MyStruct.SomeField
 MyStruct.SomeFunc()

an error should be generated if

• the type of MyStruct is not a struct type

• the type of MyStruct has no field named SomeField or function named SomeFunc

Note: the same function calling requirements apply to struct-member functions.

Check #14b Handle the “this” keyword within struct-member functions

The “this” keyword is needed to access any struct fields and member functions from within a

struct-member function. Below is an example:

 structdef MYS {
 int x, y;
 int z;
 function : void foo() {
 this.x = 8;
 this.z = this.y;
 this.foo(); // recursive call
 }
 function : void bar() {
 this.foo(); // calling other struct function
 }
 };

Similar to check #14a above, you need to verify that the field/function specified after the “.”

exists in the scope of the current struct. The error message for this check is

error14b_StructExpThis.

Note: The “this” keyword will only be tested inside struct-member functions. Also, the “this”

keyword is a strict requirement to access fields/functions belonging to the struct. Without “this”,

only the local and global scopes are checked for the identifier, and the struct scope is bypassed.

Phase III (20% -- 1 week)

Pointers, function pointers, sizeof, type casts, address-of

Check #15a Extend all previous checks to allow for operands consisting of

• Functions with pointer return types.

• Structs and pointers, and pointer dereferences.

Note: we will be testing pointer dereferences such as:
 y = (*ptr).x;
 w = ptr->x; // The arrow operator is basically the same as above
 z = *ptr2;

An error should be generated if

• The type of ptr is not a pointer type for the * operator.

• The type of ptr is not a pointer to a struct for the -> operator.

Note: For the arrow operator, first test if the left side is a pointer to a struct, using the error

message for this check. Then check if the right side is a field within the struct, using the message

from check #14 if necessary (when using this message for the arrow operator, the type argument

is the dereferenced pointer’s type).

Note: Structs will only be passed-by-reference to functions.

Check #15b Extend check #3 to allow pointer dereferences on the left-hand side of an

assignment statement.

 (*ptr).x = y;
 ptr->x = w;
 *ptr2 = z;

Check #15c Extend check #8 to detect an illegal initialization of pointers

For variable pointers (e.g. non constants), they can be initialized to NULL, some other pointer,

the result of an address-of operation (discussed in check #21), or the name of an array. Constant

pointers will not be tested. Use the same error messages from check #8. Here are some examples:

 int x;
 int[4] a;
 int* r = &x;
 int* s = a;

Check #16 Detect an illegal new statement or illegal delete statement-- that is, a statement of the

form

 new x;
or
 delete x;

where x is not a modifiable L-value of a valid pointer type.

NOTE: In Phase 0 you made changes to your grammar file in order to support the call to new x

and delete x.

Check #17 Extend Check #1-3 to allow for operands consisting of objects of pointer type, for the

following operators:

• For the T_EQU and T_NEQ operators (see Check #1), the operand types must BOTH be

of equivalent pointer type or one is of pointer type and the other is of type NULL. If both

operands are NULL, a constant expression is returned. The resulting type is bool.

• For the pre/post increment/decrement (see Check #2), allow for operands of pointer type

too. The error message for Check #2 already handles pointers.

• Assignment compatibility of variables and values of pointer type (see Check #3). NULL

should be treated as a constant assignable to variables of any pointer type.

Note: For the cases with two operands, if either operand is a pointer type or NULL, use error

messages from Check #17. Else, default to error messages from Check #1.

Check #18a Pointers to Functions

Allow for the usage of pointers to functions.

The grammar rule that defines a function pointer type is under the Type rule:

 Type ::= ...

 | T_FUNCPTR T_COLON ReturnType T_LPAREN OptParamList T_RPAREN

An example of this is shown here:

typedef funcptr : int (int x, int y) MYPTRALIAS;
MYPTRALIAS myPtr1, myPtr2;

function : int addition(int x, int y) {
 return x + y;
}

function : int subtraction(int x, int y) {
 return x - y;
}

function : int main() {
 if (myPtr1 == NULL) {
 myPtr1 = addition;
 }
 cout << myPtr1(4, 6) << endl;
 myPtr2 = subtraction;
 cout << myPtr2(5, 2) << endl;
 myPtr2 = myPtr1;
 cout << myPtr2(5, 2) << endl;
 myPtr2 = NULL;
 return 0;
}

The following items need to be checked:

• An assignment to a function pointer requires that the function pointer's type (formal

parameters, including whether pass-by-reference (with an &) or pass-by-value (default),

and the return type) match exactly to the function prototype of the function trying to be

assigned to it. Basically, check to see that the parameter list is identical in type and

reference status, and the return type is also identical. The parameter names (e.g. x, y) do

not need to match.

• Function pointers can be used like regular pointers, but are their own distinct type. You

can compare function pointers with NULL and assign them to one another or assign them

to NULL. Comparisons of function pointers to one another will not be tested.

Additionally, you can assign the name of an actual function to a function pointer. The

assignability is determined by structural equivalence. You can treat the name of an actual

function as an R-value ConstSTO, where the value is simply the unique name of that

function.

Note that you will need to modify some of the checking in the grammar to not report an error

when you try to do a function call using a function pointer. Currently, the code will report that

function pointer is “not a function”. You will need to allow function pointers to go through and

do the checking like any other function call.

There are no new error messages for this check. Issues with assignability should be handled

using the messages from Check #3. Issues with equality/inequality should be handled by Check

#17.

The type (%T) you should display in any error messages for function pointers depends on the

manner in which the pointer variable was defined. If the type was done using a typedef, simply

use the typedef name. If the function pointer type was done directly within the variable

declaration or if you are identifying an actual function as a function pointer, the following

applies. For example, to print the type of function addition, it should be in the following format:

 funcptr : int (int x, int y)

Notice that the parameter list is expanded and each parameter is printed with its corresponding

type. Specifically, we want:

- One space after each punctuation character (except for parentheses and &)

- One space between each adjacent pair of words

- The funcptr keyword, space, colon, space, return type, space, open parenthesis (with no

space after it), parameter list (if any), and close parenthesis (with no space before it).

- Each parameter declared printed separately (include the & modifier directly in front of

the parameter name if specified in the declaration).

- All parameters in original declaration order

An example of such formatting is shown below:

 funcptr : int* (float*** x, bool* &y)

Furthermore, if the error occurs on a variable defined with a typedef instead of the full type

declaration, the name of the typedef is used instead, similar to the rest of the project. So, in the

above example, if myPtr2 had an error, the type would be MYPTRALIAS.

Check #18b Extend check #8 to detect an illegal initialization of function pointers

For variable function pointers (e.g. non-constants), they can be initialized to NULL, some other

function pointer (constant or non-constant), or to the name of an actual function. Constant

function pointers will not be tested. Use the same error messages from check #8. Here are some

examples:

 function : int foo() { return 0; }
 funcptr : int() fp2 = fp1; // variable decl with init

Check #19 Sizeof Operation

Implement “sizeof” for type and variable/constant objects. An error should be generated if the

operand is not a type, or if the operand is not addressable.

The result of sizeof should be a constant R-value of int type with the proper size of the object. An

example is provided below:

typedef float FOO;
structdef MS {
 int a, b;
 function : int doo() { return 0; } // has no effect on size!
};
int x;
const float y = 55.5;
bool[4] z;
MS t;

function : void foo(bool[4] &p1, bool* p2) {
 x = sizeof(p1); // should be 16
 x = sizeof(p2); // should be 4
}

function : void main() {
 foo(z, z);
 x = sizeof(FOO); // should be 4
 x = sizeof(MS); // should be 8
 x = sizeof(float***); // should be 4
 x = sizeof(int[3]); // should be 12
 x = sizeof(x); // should be 4
 x = sizeof(y); // should be 4
 x = sizeof(z); // should be 16
 x = sizeof(t); // should be 8
}

Note: For the purposes of this assignment, the size of int, float, bool, and pointers is 4 bytes (this

makes your lives much easier). We won’t test sizeof with function pointers.

Check #20 Type Casts

Allow for the usage of type casts, creating a new object type as specified. Below is an example

of valid type casts:

typedef float FOO;
typedef FOO* FPTR;
typedef int* IPTR;
int x;
FOO y;
FPTR z;
int* intPtr;

function : int main() {
 x = (int) y;
 x = (int) (x + 4.9);
 y = (FOO) (int) (65.3);
 intPtr = (IPTR) z;
 return 0;
}

The only types that are acceptable for a cast are basic types (int, float, and bool), aliases to those

types, and pointers (to any type). Entire structs and arrays cannot be cast, but individual elements

within each can be cast if of the types listed above. Function pointers cannot be cast.

Furthermore, the result of a type cast produces an R-value. We will test having type casts on the

left-hand side of an assignment statement, as well as within other places where an L-value is

required (for example, passing a type casted variable to a pass-by-reference parameter should

produce the appropriate L-value error, and passing a type casted variable to the address-of

operator should produce the appropriate not addressable error).

Your type casts must also incorporate constant folding if the operand is a constant. In other

words, if the source of the type cast is a constant, the result will be a new properly converted

constant object. See the example below:

const bool x = true;
int[10] y;
int z;
function : int main() {
 z = y[(int) x]; // the index into the array will be 1
}

Here are some casting rules for conversions of constants:
bool --> int, float OR pointer: If true then 1, false then 0.
int, float OR pointer --> bool: If ==0 then false, !=0 then true.
float --> int OR pointer: Drop any decimals (3.99 becomes 3).
int OR pointer --> float: Converted to FP pattern (42 becomes 42.00).
int <--> pointer: No change in value.

We have provided one error message (error20) to cover cases of invalid type casts (i.e., casting

an array... type into something).

Check #21 Address-Of Operator

Allow for the address-of (&) operator. The address-of operator is only valid on something that is

addressable (hopefully, this is not surprising!). The resulting type will be a pointer to the original

object’s type. The resulting type is no longer addressable or modifiable (it becomes an R-value),

and should be an ExprSTO. If an address-of result is dereferenced, it will produce the original

object’s type and become addressable again. Furthermore, it will become a modifiable L-value,

even if the original object was not. An example is provided below:

int x, y;
int *z;
const int w = 77;
z = &x; // &x in this example is simply an R-val
&x = NULL; // Error, since not a modifiable L-val
y = *&x; // *&x is essentially just x, so OK.
*&x = y; // The * reverses the &x, making it a modifiable L-val
*&w = y; // The * reverses the &w, making it a modifiable L-val,
 // even though w was originally a constant
&*z = z; // Error, result of address-of is not a modifiable L-val

Remember that the name of a function in an expression (without the parentheses) returns a

constant function pointer. The address-of operator cannot be used on a function name to

generate a pointer to a function pointer, since the function name is an R-value. Instead, you can

store the function name into a function pointer variable or constant, and take that address of that

(as shown below). This particular case should not require any additional effort, since the

generalized actions for address-of and dereference should produce the desired effect. An

example is provided below:

function : int foo() { return 0; }
typedef funcptr : int() MYFP;
MYFP MyFuncPtr;
MyFuncPtr = foo;
MyFuncPtr(); // this will be a function call to foo!

MYFP * MyFuncPtrPtr;
MyFuncPtrPtr = &foo; // Should be an error, since foo is an R-value
MyFuncPtrPtr = &MyFuncPtr; // OK
(*MyFuncPtrPtr)(); // this will be a function call to foo!

Check #22 Extra Credit (1% - 5%) Implement function overloading.

Detect an illegal overloaded function definition:

A function definition is an illegal overload if there exists a previous definition with the same

name and an equal number of parameters of equivalent types. Note that for overloading

purposes, pass-by-value and pass-by-reference parameters count as having the same type. Also

note that return types and parameter names do not count in the function signature.

function : float foo(float &x) { ... }
function : int foo(float x) { ... }

is illegal, since they both have the same function name and one parameter of equivalent type.

Detect an illegal overloaded call:

A call to an overloaded function is illegal if no overloaded instance is legal (i.e. a call for which

there is no exact match).

For this project, there will be no automatic type promotion of argument types (ONLY for the

purpose of resolving overloaded function calls. Promotion should occur normally for non-

overloaded functions).

function : float foo(float x) { ... }
function : float foo(float x, float y, float z) { ... }
function : int main() {
 foo(1);
 return 0;
}

is illegal, since the integer 1 will not be promoted into a float because foo is overloaded.

For function calls to functions with no overloading (i.e., only one function with that name), rely

on the error5n_Call message. For overloaded functions, rely instead on the error22_Illegal

message if the parameter counts don't match up.

Note: This extra credit applies to both overloading of regular functions and to overloading of

struct-bound functions (not intermixed though, since the namespace prohibits that).

