
 0

Signature ___________________ Name ______________________

Login Name _________________ Student ID __________________

 Midterm

 CSE 131

 Spring 2008

Page 1 ___________ (28 points)

Page 2 ___________ (21 points)

Page 3 ___________ (20 points)

Page 4 ___________ (18 points)

Page 5 ___________ (26 points)

Page 6 ___________ (16 points)

Subtotal ___________(129 points)

Page 6 ___________ (8 points)

Extra Credit

Total ___________

 1

1. Which of the following would be correct if we wanted to add the minus sign (-) as an operator with higher

precedence than the current plus sign (+)? _____ (2 pts)

Using the Right-Left rule write the C definition of a variable named kashmir that is a pointer to a function
that takes one argument, an array where each element is a pointer to float, and returns a pointer to an array of 5

elements where each element is of type pointer to a pointer to a struct zeppelin. (10 pts)

Write a valid Reduced-C program to perform a simple Project I pointer and dynamic memory test. Define two

global integer pointers named ptr1 and ptr2. In main(), define a local integer variable named x. In main(), set

ptr1 to point to x. Dynamically allocate an integer appropriately such that ptr2 points to this allocated

memory. Then assign the integer value in x to the memory location pointed to by ptr2 without directly using

the variable name x. Be sure to free the memory you dynamically allocated before returning. (16 points)

D

Expr :: = Expr Op Designator
 | Designator
 ;

Op ::= T_MINUS
 | T_PLUS
 ;

B

Expr :: = Expr Op Designator
 | Designator
 ;

Op ::= T_PLUS
 | T_MINUS
 ;

A

Expr :: = Expr T_PLUS Expr1
 | Expr1
 ;

Expr1 ::= Expr1 T_MINUS Designator
 | Designator
 ;

C

Expr :: = Expr T_MINUS Expr1
 | Expr1
 ;

Expr1 ::= Expr1 T_PLUS Designator
 | Designator
 ;

 2

2. Given the following Reduced-C program and following the Project I spec for parameter passing type

checking, for each function call determine if a semantic error will occur (and which kind of error). (21 pts)

A. Equivalence Error

B. Addressability Error

C. Assignability Error

D. No Error

function : void foo0 (float[5] & x) { /* ... */ }
function : void foo1 (float x) { /* ... */ }
function : void foo2 (int x) { /* ... */ }
function : void foo3 (float & x) { /* ... */ }
function : void foo4 (float * & x) { /* ... */ }
function : void foo5 (float * x) { /* ... */ }

function : int main()
{
 float a;
 int b;
 float[5] c;
 int[5] d;
 float * e;

 foo0(c); _____

 foo0(d); _____

 foo1(a); _____

 foo1(e); _____

 foo1(b); _____

 foo2(a); _____

 foo2(b); _____

 foo3(a); _____

 foo3(e); _____

 foo3(b); _____

 foo3(a + b); _____

 foo3(*&a); _____

 foo4(&a); _____

 foo4(e); _____

 foo4((float *) &b); _____

 foo5(&a); _____

 foo5(c); _____

 foo5(d); _____

 foo5(&b); _____

 foo5(e); _____

 foo5((float *) &b); _____
}

 3

3. The types in Reduced-C variable definitions are often unnecessary in the sense that it may be possible to infer

variables' types and detect type errors simply from their use. For each of the following program fragments, find

a set of types that makes it legal, and write a Reduced-C definition for each variable. If there is more than one

possible type, choose only one. If there is none, write "NONE". Assume all arrays are of size 7. (2 pts each)

 a = b[*a];

______________________ a ;

______________________ /* b requires two lines of Reduced-C */

______________________ b ; /* to properly define it */

 d = 5.5;

 if(a != c)
 c = d / (b % a);

______________________ a ;

______________________ b ;

______________________ c ;

______________________ d ;

 if ((a != b) || c)
 c = b;

______________________ a ;

______________________ b ;

______________________ c ;

 4

struct foo {
 int a;
 double b;
 struct foo c[2];
 short d[4];
};

struct foo {
 int a;
 double b;
 struct foo *c;
 short d[4];
};

struct foo {
 int a;
 double b;
 struct foo c;
 short d[4];
};

4. Consider the following struct definitions. Specify the size of each struct on a typical RISC architecture (like

ieng9) or -99 if it is an illegal definition. (6 pts)

 Size _______ Size _______ Size _______

Using Reduced-C syntax from Project I, define a pointer to an array of 3 floats named foo such that

(*foo)[2] is a valid expression. This will take two lines of code. (4 pts)

Assume the following Reduced-C definitions are correct: (8 pts)

structdef RECA
{
 int * ptr;
};

structdef RECB
{
 RECA * ptr;
};

RECB * ptr;

a) What type is *(ptr->ptr) ? ____________________________________

b) What type is (*(*ptr).ptr).ptr ? ____________________________________

c) What type is ptr->ptr ? ____________________________________

d) What type is *(ptr->ptr->ptr) ? ____________________________________

 5

5. Given the following definitions: (4 pts)

 int a;
 float b;

Give an example of a converting type cast using only variables a and b defined above and any appropriate type

cast(s).

Give an example of a non-converting type cast using only variables a and b defined above and any appropriate

type cast(s) and any appropriate operators.

With regard to the following C/Reduced-C definition: (22 pts)

 float x;

What type is &x ? _________________________

Is the expression &x addressable ? ________________ /* In other words, can we say &&x ? */

What type is *(long long *) &x ? _________________________________

Is the above expression addressable? ___________ /* In other words, can we say &*(long long *)&x ? */

What type is (struct fubar *) &x ? ___________________________________

Is the above expression addressable? ____________ /* In other words, ... you get the idea! */

What is the type of the expression x + 5 ? ________________

Is the above expression addressable? _________________

If &x is 0x8000, what value does &x + 3 represent? ________________ /* Yes, this is in hexadecimal! */

Is the above expression addressable? ________________

Is the expression *(&x + 3) addressable? ______________

 6

6. Show the memory layout of the following C struct/record definition taking into consideration the SPARC

data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate

struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.

For example, some number of p[0]s, p[1]s, p[2]s, etc. Place an X in any bytes of padding. Structs and
unions are padded so the total size is evenly divisible by the most strict alignment requirement of its members.

(16 pts)

struct foo { low memory
 char a[5]; fubar:
 double b;
 float c;
 struct fubaz {
 double y;
 short z;
 } d;
 int e[3];
};

struct foo fubar;

 high memory

What is the offsetof(struct foo, e[1])? ________

What is the sizeof(struct foo)? ________

If struct foo had been defined as union foo instead, what would be the sizeof(union foo)? _______

If you rearranged the order of the struct members in struct foo to minimize padding, what would be the size of

this modified struct? _______

How many bytes are saved by rearranging the struct members to minimize padding? _______

Does it matter whether you arrange the struct members in struct foo from largest to smallest data type or

smallest to largest data type to minimize padding? ________

 7

Extra Credit (8 points)

What gets printed by the following C program?

#include <stdio.h>

int
main()
{
 char a[] = "CSE131";
 char *p = a;

 printf("%c", ++*p); ______

 printf("%c", *(p+3) = *p); ______

 printf("%c", *++p); ______

 printf("%c", --*p++); ______

 printf("%c", *p++); ______

 printf("%c", (*p)++); ______

 printf("%d", ++p - a); ______

 printf("\n%s\n", a); _______________________

 return 0;
}

A portion of the Operator Precedence Table

Operator Associativity

++ postfix increment L to R
-- postfix decrement

* indirection R to L
++ prefix increment
-- prefix decrement
& address-of

* multiplication L to R
/ division
% modulus

+ addition L to R
- subtraction

 .
 .
 .

= assignment R to L

 8

Scratch Paper

 9

Scratch Paper

