
CSE 131 – Compiler Construction

Discussion 7: Short-Circuiting, Loops,

Pointers, and Arrays/Structs

2/22/2010

2/26/2010

Overview

� Phase 2

� Some of Phase 3

Short-Circuiting

� && and || are "short-circuiting" operators.

� In A && B, if A evaluates to false, B is not

evaluated.

� In A || B, if A evaluates to true, B is not

evaluated.

Short-Circuiting

� Think of how you handle an if-else

statement.

� Short-circuiting follows the same principle:

� In the A && B case:

� if not A then false, else B

� In the A || B case:

� if A then true, else B

Short-Circuiting

� RC: bool c = a && b:
! Load a and check if false

set a, %l0

ld [%l0], %l0

cmp %l0, %g0

be flabel

nop

! a is true, so check b

set b, %l0

ld [%l0], %l0

cmp %l0, %g0

be flabel

nop

! b is true, so result is true

mov 1, %l5

ba endlabel

nop

flabel:

mov 0, %l5 ! Result is now in %l5

endlabel:

set c, %l0

st %l5, [%l0]

While Loops

� Also similar to an If-Else statement

� You need to:

� Branch to the end of the loop

� Check the loop condition

� If true, branch back into the loop body

� Also, to handle break/continue statements, you will

most likely need a Loop Label Stack just for the

loops.

While Loops

� Consider the following in RC:

while (x < 5) { x = x + 1; }

ba test

nop

loop:

set x, %l0

ld [%l0], %l1

inc %l1

st %l1, [%l0]

test:

set x, %l0

ld [%l0], %l0

set 5, %l1

cmp %l0, %l1

bl loop

nop

end: ! Useful label for break

Break/Continue Statements

� If you always place a unique “end” label
after each of your loop chunks of code, you
can simply branch to that label when you
encounter an break statement. Continue just
goes to the “test” label where the condition is
checked:
� break � ba endlabel w/ nop

� continue � ba testlabel w/ nop

� This is where that Loop Label Stack comes in
handy, since you just grab the top string and that’s
the label you want to branch to

Array/Struct Allocation Method

� When you declare an array, the way you would
allocate space for it is to allocate an entire chunk in
the BSS and have the variable label at the beginning
of it:

int[7] x;

.section “.bss”

.align 4

x: .skip 28 ! 7 * sizeof(int)

Now x[0] is at x+0, x[1] is at x+4, and so on.

Array/Struct Allocation Method

� A useful attribute to have for Arrays and Structs is

“size”, so you know how much space to allocate for

the entire object (should already have this from

Project I anyway!).

� Offsets would also be useful. For arrays, the offsets are

simply multiples of the element’s size. For structs, the

offsets are the collective sizes of the preceding fields.

Array Usage (Simplified)

� a = x[b] + 7; ! x is array of int

set b, %l0 ! b

ld [%l0], %l0

sll %l0, 2, %l0 ! b * 4 � offset

set x, %l1 ! x � base address

add %l1, %l0, %l0 ! Base + offset

ld [%l0], %l0 ! x[b]’s value

add %l0, 7, %l0 ! x[b] + 7

set a, %l1

st %l0, [%l1] ! a = x[b] + 7

Struct Usage

� Very similar to array usage.

� You need to start at the base address of

where the struct is located.

� Then, you have to move some offset to get to

a specific field you are interested in.

� Once at that location, you either load or

store, depending on what you wanted to do.

Passing Arrays

� Arrays must be passed by reference (&), where you
pass the address to the beginning of the array.

function : void baz (ARRTYPE &a)

baz(myArr);

� In the above case, you would store the base address
of the first element in %o0. Once in baz, %i0 will
have the address of the first element. All other
elements will be accessed by some offset from that
first element address.

Passing Structs

� Structs must be passed by reference (&), with the
address to the beginning of the struct being passed.

function : void bar (STRUCTTYPE &r)

bar(myStruct);

� In this case, you would store the base address of
myStruct in %o0, and in function bar, use the given
base address that is in %i0.

� As you can see, Struct and Array passing are the same.

Value versus Reference

� If you have any doubts about value vs.

reference parameters or parameter passing,

please look at the following URL:

� http://www.cse.ucsd.edu/users/ricko/CSE131/RefVsValue.pdf

Pointers

� Consider p = q;

� This is just copying the address that is in q into p.

set q, %l0

ld [%l0], %l0 ! Get address in q

set p, %l1

st %l0, [%l1] ! Store into p

Pointers

� Consider *p = *q;

� This is getting the actual value at where q is
pointing and making where p points that value.

set q, %l0

ld [%l0], %l0

ld [%l0], %l0 ! Double load to get value

set p, %l1

ld [%l1], %l1

st %l0, [%l1] ! Store value

Pointers

� New
� Basically just boils down to a call to calloc to allocate
memory on the heap that is zero-initialized

� Prototype of calloc:

void *calloc(size_t nelem, size_t elsize);

� For simplicity, you can say nelem is 1 and that elsize is the
size of the object you are allocating

� Delete
� Basically just a call to “free” with the address:

void free(void *ptr);

� Remember to also set the argument to NULL afterwards.

Pointer Return Types

� Don’t forget that functions can return pointer

types.

� In this case, you want to place the address

(value of the pointer) in the %i0 register.

� That address can then be assigned into

another pointer as so:

� ptr = foo(…);

An Example

typedef int* PTRTYPE;

PTRTYPE myGlobal;

function : PTRTYPE foo() {

PTRTYPE myLocal;

new myLocal;

*myLocal = 420;

return myLocal;

}

function : int main() {

myGlobal = foo();

cout << *myGlobal;

return 0;

}

The Result
.section ".bss"

.align 4

myGlobal:.skip 4

.section ".rodata"

.align 4

ifmt: .asciz "%d"

.section ".text"

.align 4

.global foo

foo:

set foo.SAVE, %g1

save %sp, %g1, %sp

! new myLocal

set 1, %o0 ! numelem

set 4, %o1 ! sizeof(int)

call calloc ! new

nop

st %o0, [%fp-4]

! *myLocal = 420

set 420, %l0

ld [%fp-4], %l1

st %l0, [%l1]

! return myLocal

ld [%fp-4], %i0

ret

restore

foo.SAVE = -(92 + 4) & -8

.global main

main:

save %sp, -96, %sp

! myGlobal = foo()

call foo

nop

set myGlobal, %l7

st %o0, [%l7]

! cout << *myGlobal

set ifmt, %o0

set myGlobal, %l7

ld [%l7], %l0

ld [%l0], %o1

call printf

nop

mov %g0, %i0

ret

restore

What to do Next!

1. Finish Phase 2.

2. Start of Phase 3.

3. Thoroughly test and re-test Phase 1, 2, and 3.

4. Come to lab hours and ask questions.

Topics/Questions you may have

� Anything else you would like me to go over

now?

� Anything in particular you would like to see

next week?

