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Outline

• Evolutionary Computation
• Basic GA
• An example: GABIL
• Genetic Programming
• Individual Learning & Population Evolution
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Evolutionary Computation

• Computational procedures patterned after 
biological evolution. Operators:

–Inherit
–Crossover
–Mutation

• Based on probability theory

GA(Fitness, Fitness_threshold, p, r, m)
• Initialize: P p random hypotheses
• Evaluate: for  each h in P, compute 
Fitness(h)
•While max(Fitness(h)) < Fitness_threshold

–Select: probabilistically select (1-r)*p members 
of P to add to Ps.

•Pr(hi) = Fitness(hi) /Sum(Fitness(hk))
–Crossover: probabilistically select r*p/2 pairs of 
hypotheses from P. For each pair, <h1, h2>, 
produce two offerspring by applying the 
Crossover operator. Add all offspring to Ps.



3

GA(Fitness, Fitness_threshold, p, r, m)

–Mutate: invert a randomly selected bit in m*p 
random members of Ps
–Update: P Ps.
–Evaluate: for each h in P, compute Fitness(h)

• Return the hypothesis from P that has the 
highest fitness

Representing Hypotheses
•Represent

(Outlook = Overcast OR Rain) AND (Wind = Strong)
By             Outlook             Wind

011                      10

•Represent
IF Wind = Strong THEN PlayTennis = yes
By        Outlook     Wind      PlayTennis

111            10          10
Note: Outlook: Sunny, Overcast, Rain

Wind: Strong, Weak
PlayTennis: yes, no 
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Operators for GA

Initial strings     Crossover Mask   offspring
Single-point    11101001000       11111000000     11101010101
crossover         00001010101 00001001000

Two-point       11101001000       00111110000      11001011000
crossover         00001010101 00101000101

Operators for GA

Initial strings     Crossover Mask   offspring
Uniform          11101001000 10011010011     10001000100
crossover         00001010101                                  01101011001

Point                11101001000                                  11101011000
mutation 
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Select most fit hypotheses
• Fitness proportionate selection

–Pr(hi)=Fitness(hi)/Sum(Fitness(hk))
–Can lead to crowding

•Alternatives
–Tournament selection

•Pick h1 and h2 randomly
•With probability p, select the more fit one from h1 and h2

–Rank selection
•Sort all hypotheses by their fitness
•Prob. of selection is propositional to its rank

•Complexity and generality

GABIL [Dejong et al. 1993]
• Learn disjunctive set of propositional rules
•Fitness:

–Fitness(h)=(correct(h))^2
•Representation:

–IF a1=T AND a2=F THEN c=T; IF a2=T THEN c=F
By:        a1    a2    c             a1     a2      c

10   01    1             11     10      0

•Genetic operators:
–Variable length rule set
–Well-formed bit  string hypotheses
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GABIL [Dejong et al. 1993]
• Crossover

– a1    a2     c       a1      a2       c
– h1:  1[0     01     1       11     1]0       0
– h2:  0[1     1]1     0       10     01       0

•Choose crossover point for h1 as <1,8>
•Restrict the crossover points in h2: <1,3>, 
<1,8>,<6,8>.
•If <1,3>,Results:

– 1[1     1]0    0
– 0[0      01     1        11       1]1     0       10      01      0

GABIL Extensions
• Add new genetic operators, also applied 
probabilistically:

–AddAlternative: generalize constriant on ai by 
changing a 0 to 1
–DropCondition: generalize constriant on ai by 
changing every 0 to 1

•Add new fields to bit string:
– a1    a2    c        a1      a2      c    AA    DC
– 01    11    0       10     01       0      1       0
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GABIL Results
• Average performance on a set of 12 
synthetic problems:

–GABIL without AA and DC operators: 92.1% 
accuracy
–GABIL with AA and DC operators: 95.2% 
accuracy
–Symbolic learning methods (C4.5, ID5R, AQ14) 
ranged from 91.2 to 96.6% accuracy

Schema
• How to characterize the evolution of 
population in GA?

–Schema: string containing 0,1 *
–0*1, representing 001, 011

•Characterize population by number of 
instances representing each possible schema

–m(s, t): number of instances of schema s in 
population at time t
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Schema
• E[m(s, t+1)] >=

u(s, t) * m(s, t) / f(t) 
*(1 - pc * d(s)/(l -1))
*(1 – pm)^(o(s))

•f(t): average fitness of population at time t
•u(s,t): average fitness of schema s at time t
•pc: prob. of single point crossover operator
•pm: prob. of mutation operator
•l: length of single bit strings
•o(s): #of defined bits in schema s
•d(s): distance between leftmost and rightmost 
defined bits in schema s

Genetic Programming
• population of programs represented by trees:

sin(x) + squareRoot(square(x) + y)
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Biological Evolution

•Lamark (19th century)
–Individual genetic makeup was altered by 
lifetime experience
–Current evidence contradicts this view
–But it improve efficiency in GP

•What is the impact of individual learning on 
population evolution? 

Baldwin Effect

•Assume:
–Individual learning has no direct effect on 
individual DNA

•Then:
–Ability of individuals to learn will support more 
diverse gene pool
–More diverse gene pool will support faster 
evolution of the gene pool

•So, individual learning indirectly increases 
the evolution rate
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Baldwin Effect

•Plausible example:
–New predator appears in environment
–Individuals who can learn (to avoid it) will be selected
–Increase in learning individuals will support more 
diverse gene pool
–Resulting in faster evolution
–Possibly resulting in new non-learned (or genetic) traits 
such as instinctive fear of the predator

Experiments on Baldwin Effect
[Hinton & Nowlan, 1987]

• Evolve simple neural networks:
– Some networks weights fixed during lifetime, while others 

trainable
– Genetic makeup determines which are fixed, and their 

weight values
• Results:

– With no individual learning, population failed to improve 
overtime

– With individual learning
• Early generations: population contained many individuals with many 

trainable weights
• Later generations: higher fitness, while number of trainable weights 

decreased
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Usage
• huge search space
• avoid the problem of local minimal, so after 
several generations, the solution is very near 
to the optimal one.
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