Neural Network Approach To Solving
The Traveling Salesman Problem

The Traveling Salesman

» The shortest route for a salesman to visit every
city, Wlthout stopplng at the same city twice.

u) Baitic Sea
fﬁpﬁ Sl v
ey S L

UNITED |
KINGDOM /£

!ie

Frrery it
.Qurtm d "‘” «
« F3 3 L
L, m‘tﬁoh{hg L #d 5
q%"ﬂegm ¥ "" fera o pPevdba
b .

||||||

o - MAPRVESTEON 7 L
Figure 1-1; Map of Germany from which latitude and longitude were manually measured.

Methods

« Random

— An algorithm must be better than this to be
worthwhile

» Continuous Hopfield Network
— Fully-Connected
— Self-Associative

« Kohonen Self-Organizing Map
— Topologically Preserving

The Hopfield Net

» Created by James
Hopfield, originally
published in 1982.

+ Self-Associative.

M X F—t= wa[4x4]

* Single-Layer Network. CH—+

« Is allowed to run until it |
stabilizes. GoF—

» Training data represents " inpat . 2t a5 output

“attractor states”
» Output is binary.

FIGURE 3.9.10. A four-node Hopfield autoassociarive neural net

A Simple Hopfield Example

Training Data

Network

LA

Output 1 Output2 Output3
]

The Math

One node per characteristic (pixels in our
example).

The net is initialized (i.e. trained) to a
square weight matrix.

The entry at position X,Y is the value of
the weight from X to Y.

If for all nodes X and Y, entry X,Y = entry
Y,X implies that the net WILL stabilize.

The Math + Pascal

* T;;is the weight from node i to node .

. T,=0 if i=j.
M

. Ti’j: > x; - x;If i does not equal j, where x; is element i in trainin g example s.
s=1

procedure assign_connection_weights;
var sum,(i,j,s : integer;
begin for i:=1 to PATTERN_LENGTH do
for j:=1 to PATTERN_LENGTH do
ifi=j
then t[i,j]:=0
else begin sum:=0;
for s:=1 to MAX_CLASSES do
sum:=sum + X[s,i] * X[s,j];
t[i,jl:=sum
end
end;

Running The Network

 We have a 2-dimensional array m.
* M(j,t) = the value of output j at time t.
* Initialize M(j,0) for all j to be our input.

» The weights in T are multiplied by the
corresponding values in M, summed
together. This is the new value stored in M.

 Remember: in basic Hopfield networks
values in M and T are binary.

More Pascal Psuedocode

const MAX_TIME = 10; {Maximum no. of time slots before
convergence}

var mu : array [1..MAX_TIME,1..PATTERN_LENGTH] of integer;

procedure copy_input_pattern;

var i ; integer;

begin for i:=1 to PATTERN_LENGTH do
mu[0,i]:=input_pattern[i] {Each element +1 or -1}

end;

More Pascal Psuedocode

procedure iterate;
var tt : integer; {Time slot}
i,j : integer; {General loop variables}
sum : integer;
begin for tt:=1 to MAX_TIME do
begin for j:=1 to PATTERN_LENGTH do
begin sum:=0;
fori:=1 to PATTERN_LENGTH do
sum:=sum + t[i,j] * multt-1,i];
{Now pass sum through the hard-limiter, so itis 1 or -1}
if sum>0
then multt,j]:=1
else mul[tt,j]:=-1
end
end
end;

Hopfield As Applied To The
Traveling Salesman

1. Initialize all units according to “The Willshaw
Initialization”

» Cities on opposite sides of the map should be
placed on opposite sides of the tour:

e Bias in terms of the ith city and the jth position, with
coordinates x; and y,

u = bias (i, j) = cos(arctan (¥=57) + %)\/(xi - 0.5)2 + (y, -0.5)?

Continuous Hopfield cont.

2. We will perform steps 3-7 until our net
stabilizes.

3. Perform steps 4-6 n? times, where n is
the number of cities.

4. Choose a node at random.

5. Update M for this time step on the
selected unit.

Continuous Hopfield cont.

6. Apply the output function to see how
close this node is to a city, potentially
fixing its location.

7. Check for stabilization
e Use a square matrix

— Rows correspond to cites

— Columns correspond to a cities place in the
tour

Kohonen Self-Organizing Map
(SOM)

» Unsupervised learning artificial neural
network.

* |Is known to perform well on classification
problems.

« Commonly used for:

— Visualization of statistical data, analysis of
electrical signals from the brain, cloud
classification from satellite, clinical voice
analysis, and automatic speech recognition.

Some Important Characteristics of
Self Organizing Maps

« Topography preserving.

— Keeps relationships with other nodes intact.
— Hopfield is fully connected.

* Similar to the brain in which neurons in the
same cluster have a stronger connection
than to those outside of the cluster.

* No other artificial neural network has this
property.

Finnish Phonetics

®®®®®®®®®®®®®®@®@@®®@®®@
CICICICICICICICICISIOLS
CICICICICICICICICISISIS
®®®®®®®®®®®®@@®©@©@©@©@@
CICICICICICISISISIS@I®)

G
)
&)
o
@)
0
O
O
0
@
O
O

Network Structure

eInputs are connected to all
neurons

*Neurons are NOT connected to
each other.

*Neurons DO contain
information pertinent to their
topographical location.

*Neurons, as usual, do contain
weights.

Training

Initialize each nodes weights.
Choose an element from the training set.
Choose a Best Matching Unit (BMU).

Find nodes close to the BMU and update
them to be more like the BMU.

Repeat.

Initialization Code

class CNode public:
{ CNode(int Ift, int rgt, int top, int bot, int
private: NumWeights):m_iLeft(Ift), m_iRight(rgt),

m_iBottom(bot), m_iTop(top)

/Ithis node's weights

vector<double> m_dWeights; /linitialize the weights to small random
- [Ivariables
/lits position within the lattice for (int w=0; w<NumWeights; ++w)

double m_dX, m_dY;

m_dWeights.push_back(RandFloat());

Ilthe edges of this node's cell. Each node, when }

/ldraw to the client

/larea, is represented as a rectangular cell. The /lcalculate the node's center

Ilcolour of the cell m_dX = m_iLeft + (double)(m_iRight -
/lis set to the RGB value its weights represent. ~ M_iLeft)/2;

int m_iLeft; m_dY =m_iTop + (double)(m_iBottom -
int m_iTop; m_iTop)/2;

int m_iRight; }

int m_iBottom;)

Finding The BMU

Euclidean distance is commonly
used (V is the current input vector Dist =
and W is the node’s weight vector)

public:
CNode(int Ift, int rgt, int top, int bot, int NumWeights):m_iLeft(Ift), m_iRight(rgt),
m_iBottom(bot), m_iTop(top)

/linitialize the weights to small random variables
for (int w=0; w<NumWeights; ++w)

m_dWeights.push_back(RandFloat());
}

/lcalculate the node's center
m_dX = m_iLeft + (double)(m_iRight - m_iLeft)/2;
m_dY =m_iTop + (double)(m_iBottom - m_iTop)/2;

10

The BMU’s Neighborhood

e Look at all neurons within a certain radius of the BMU.
» The radius decreases the longer the net has been run.

Sigma-0 denotes the width of the net at
time t-0. Lambda is a time constant.

Updating The Nodes

» Every node has its weight vector updating
according to the following equation.

—t: time step

— L(t): learning rate at time t o=Lew[-5] 125
— W(t): weight at time t

— V: input vector

— theta(t): “proportionalizes” the effect of the
learning rate. ®(r):cxp[- d*‘*"’] =123,

. W(EHL)=W+LOVO-W(D) -

11

Some code?

bool Csom::Epoch(const vector<vector<double> > &data)

/Imake sure the size of the input vector

/Imatches the size of each node's

/Iweight vector

if (data[0].size() != constSizeOfInputVector) return false;

/Ireturn if the training is complete
if (m_bDone) return true;

Ilenter the training loop
if (--m_iNumiterations > 0)

/lchose a vector at random from the
/ltraining set to be

/lthis time-step's input vector

int ThisVector = RandInt(0, data.size()-1);

IIpresent the vector to each node and determine

/lthe BMU

m_pWinningNode =
FindBestMatchingNode(data[ThisVector]);
/lcalculate the width of the neighbourhood for this timestep

m_dNeighbourhoodRadius = m_dMapRadius * exp(-
(double)m_ilterationCount/m_dTimeConstant);

/INow to adjust the weight vector of the BMU and its
/Ineighbours. For each node calculate the m_dInfluence
/l(Theta from equation 6 in the tutorial. If it is greater than
/lzero adjust the node's weight accordingly

for (int n=0; n<m_SOM .size(); ++n)
{

/lcalculate the Euclidean distance (squared) to this node

/ffrom the BMU

double DistToNodeSq = (m_pWinningNode->X()-
m_SOM[n].X()) * (m_pWinningNode->X()-m_SOMI[n].X()) +
(m_pWinningNode->Y()-m_SOM[n].Y()) *
(m_pWinningNode->Y()-m_SOMI[n].Y());

double WidthSq = m_dNeighbourhoodRadius *
m_dNeighbourhoodRadius;

/lif within the neighbourhood adjust its weights
if (DistToNodeSq < (m_dNeighbourhoodRadius *
m_dNeighbourhoodRadius))

/Icalculate by how much its weights are adjusted
m_dinfluence = exp(-(DistToNodeSq) / (2*WidthSq));
m_SOMI[n].AdjustWeights(data[ThisVector],
m_dLearningRate,
m_dInfluence);
}
}//next node
/Ireduce the learning rate
m_dLearningRate = constStartLearningRate * exp(-
(double)m_ilterationCount/m_iNumlterations);
++m_ilterationCount;

else {m_bDone = true; }
return true;

}

Applying Kohonen To The
Traveling Salesman

For setup:

» Place a “neuron” at each town on the map.

» Place a second set, of cardinality greater
than or equal to the number of towns, of
neurons in a circular formation around the

first set of neurons.

— These neurons will be stored in a 1-

dimensional array.

12

Running The Network

Repeatedly present a town-neuron and it’s
weights to the other neurons.

Find and update the BMU.
Update all nodes around the BMU.
Run until we converge to a path.

An Example Result

Gemman Saesman Best Pain, 3717 km

g §

8

by

g B

Latftuge fem nodh of §1.0 deg nodh)
g y =

2001

Kohonen Self-Organizing Map.

13

References

Neural Network Approach To Solving The
Traveling Salesman Problem. Ralph Reilly and
Plamen Tchimev.

The Self-Organizing Map. Teuvo Kohonen.

Game Programming Gems — A Neural Network
Primer. Andre LaMothe.

http://richardbowles.tripod.com/neural/hopfield/h

opfield.htm Richard Bowles
http://www.ai-junkie.com/ann/som/som1.html

http://www.comp.nus.edu.sg/~pris/AssociativeM
emory/HopfieldModel.html

14

