Neural Networks -

camping

presented by VLM on 3. May 2005

—OpenOfficeorg1l— — — o-owniew—

uuuuu

Overview

1. Topologies

RBF

2. Learning methods

TDL

3. Application to Games

4. Considerations

5. Examples

A NMSU - CS 579 ets in Games

Tic-Tac-Toe

Backgammon

Tigers and Goats (Asnyc. Game)
Chess

Go

CS

Made with OpenOffice.org

B4 Topologies

» Feed-Forward Net (Single/Multi)

V4 Topologies

» Feed-Forward Net (Single/Multi)
» Recurrent Network

V4 Topologies

» Feed-Forward Net (Single/Multi)
» Recurrent Network
» SOM / SOTA

2 Topologies

» Feed-Forward Net (Single/Multi)
= Radial Basis Function (RBF)
» Recurrent Network

»SOM / SOTA

Z Radial Basis Function

> 3 Layers
s |nputs, RBF Units, Outputs

Qutputs

I Each RBF Unit has a center i and a vector
of coefficients ¢,

Centers

P Value of Output unit is »,=X¢,G(7—i[)

Inputs

P G() is radial basis function, usually
Gaussian g(x)=e¢"

s Number of RBF units equal to training examples with center set to input
s Reduces learning to only learning the coefficients
s Generalized RBF when allowed to have fewer centers

()
Made with OpenOffice.org

V4

Learning

» Supervised (‘learning with teacher'
-> appxroximate 1/0O Mapping)

10

V4

Learning

» Supervised (‘learning with teacher'
-> appxroximate 1/0O Mapping)

s Backpropagation (BP)
s Backpropagation with Momentum

P>

11

Vi

Learning

» Supervised (‘learning with teacher'
-> appxroximate 1/0O Mapping)

s Backpropagation (BP)
s Backpropagation with Momentum

» Reinforcement learning (‘'learning with critique'
->delayed reward / selfplay)

s Genetic Algorithms (GA)

s Temporal Difference Learning (TDL)

>

12

&

Learning

» Supervised ('learning with teacher
-> appxroximate 1/0O Mapping)

s Backpropagation (BP)
s Backpropagation with Momentum

» Reinforcement learning (‘'learning with critique'
->delayed reward / selfplay)

s Genetic Algorithms (GA)

s Temporal Difference Learning (TDL)
» Unsupervised (find underlying Properties)

s Autoassociation — learns identity function

s Time series prediction

13

s I1DL

» Compares each prediction to the following, and
changes it

» Last prediction is compared to actual outcome
» Propagates error back from the last to the first
» Learns smoother prediction function

» Single-Step vs. Multi-Step Problem

P>

14

TDL Algo

» Reminder: normal BP
> wzmim@ (2.1)
» Av=«a(z-P)V P, (2.2)

» TDL uses normal FF-ANN

[Writen Error as differences between succesive Predictions
(Z_PI)ZZ:(PHI_PI') Wlth P.=z

and replace using (2.1) & (2.2) ¥-¥+3a¥ -¥+Sac-rw,p

=1
W+ 2 E{P“ P)V_P

- E{IE{PH P)V P

k=1 =1

w4 EH(PHI u P,)Z V. P,

15

= Which gives us 4%=«x(P, - ZV P, (2.3)

TD(A)

» (2.3) updates every prediction equally
P Preferable to affect more recent predictions more
P Introduce A" with 0<a<I:
Aw=a(P,, - ZN 'V, P, (2.4)
» (2.3) and (2.4) equal forA=1
» Thus (2.3) is TD(1)

P Corresponds to DFS: assumes most recent choices have
most impact

P In Games BFS might also be reasonable: choices made
early in the game determine outcome

! tk
s Just invert \: avw=a(P,,-P)) (~)

k=1

>a|._

16

V4

Application to Games

17

V4

Application to Games

» Train Heuristic Function H(f)
P

18

V4

Application to Games

» Train Heuristic Function H(f)
» Multiple Nets

19

&

Application to Games

» Train Heuristic Function H(f)

» Multiple Nets

« Train aspects (divide & conquer)

e Train moves / actions
e Train pieces
e Train fields
s Train judges and pick best

>

20

&

Application to Games

» Train Heuristic Function H(f)

» Multiple Nets

« Train aspects (divide & conquer)

e Train moves / actions
e Train pieces
e Train fields
s Train judges and pick best

» Build NNTree as «-B Evaluator

21

Considerations

P One Net for both sides? (Async. Games)
P Training with Opponent?

s Inferior - may not learn
s Same level

s Stronger — may learn to loose

P Circular states (repitition)

P Representation of input:

s Wealthy (piece difference)
s Plainly
s Linear indepence of input vectors

* NN might converge to shared point instead of any
maximum

22

Example: TTT

P Learns H(f) by TD(0.6), o decreasing

» GRBF with 200 centers

s 425 lterations bootstrapping: 8 positions filled
s 575 lteratinons with 7 filled
s |Last 1000 1/5 of all positions as starting points

» 4 Experiments: selfplay, X, O and both against perfect opp.

» Input 10-dim Vector: 9 squares + turn

» Output 3-dim: P(X-win), P(O-win), P(draw)
» Outcomes: Play better when playing X
» Self-play best

» None learned underlying symmetry

» Only predicted draws accurately

23

&

Example: TDGammon

P Keys: Absolute vs. relative Error, stochastic
» MLP net, 198 inputs, 40-80 hidden, 3 outputs

P Self-play: every step calc. all dice rolls and play each
resulting game

> After 300,000 games TDG 0.0 was as good as

N eu rOG ammon Programm Hidden Units Training Games Opponents Results
TDG 0.0 40 300000 Other Progs Tied for best
TDG 1.0 80 300000 Robertie, Magriel... -13/51 games
TDG 2.0 40 800000 Var. Grandmasters -7/38 games
TDG 2.1 80 1500000 Robertie -1/40 games
TDG 3.0 160 1500000 Kazaros 6/20 games

TDG 2.0 implemented 2-ply Tree-search

TDG 3.0 used selective 3-ply search

TDG 3.0 plays at grandmaster level and taught them
how to play some posititions

24

&

Ex: Tigers&Goats

[t
» FF-ANN (24,12,5,1), tanh transfer func:
s |nputs include: #capt. Goats, #Tiger
moves, #trapped Tigers, #goat moves
w/o capt. Manh. Distance of each pair [] (1]
of Tigers Iput Hidden

» Co-Evolution using GA

» 20 Networks for each side, each plays
against 4 others, top 10 retained &
mutated

P Results: Goats can at least draw the game ot coas capturea()

» Very complicated game for humans: Fullfimpet B)
admits no vague feelings about what
features are correlated with good/bad
position, maybe ANNs can help...

25

“

Ex: NeuroDraughts

» MLP with BPM

P Feature input better than plain board:

PieceAdvantage/DisAdv.
PieceThreat/Take
Our/his CenterControl
Mobility

Advancement

representation

wins

draws

losses

not lost

total

binary

133

258

189

391

580

direct

119

266

195

385

580

features

201

310

i

11

580

P Findings: Modular Net not advantageous

P Binary, direct Net very similar

P Direct I/O links stronger than FF-ANN

P Higher Discount value beneficial

P look-ahead affects A, deeper search better than higher A

P GA Co-Evolution with 2-ply search best, earlier clones perform
sometimes better

26

&

Ex: NeuroChess

> Uses 2 ANNs

s EBNN(175,165,175) trained first with a large grandmaster DB
(120k games)

» Chess Model M - captures domain spec. knowledge
e« Maps a board s, tos,.,2 half-moves later

s TD(0) then trains an evaluation network V (175,0-80,1)
e 3-ply, Quiescence search
e Uses M to bias its input
e 90% Trained using grandmaster DB
e Reqgularily played against GNUChess

» Weak opening

P Not as good as GNUChess and humans

» NN Evaluation takes longer than linear - less search time

27

Ex: NeuroGo

[Evaluation J

P FF-ANN, one unit per intersection f

s Bad for large boards

P Varying input hidden layer units (3-24)

P First board is transformed, connections
are determined by Relation Expert (a-
priori knowledge), mainly stone Dist.

==

Relation Feature External
Expert Expert Expert

t & *

P Ext. Expert operates solely, can override (S———]
output of net, uses D. Benson's Algo

P Trained against itself, some P(move) as
noise

P lost against 'Many faces of Go' which has
a lot of feature knowledge

28

Ex: Kalah

P Very similar to NeuroDraughts (Anaconda)

» FF-ANN(14,20,10,1)

B PDI is difference in Kalahs

P Co-Evolution, 1000 Gens., 5 opponents, topl5
» Results: z

&
s (1) Direct-PDI .

1 101 201 301 401 501 €01 701 801 901 1001

Generation
150

L 4.
& 100 M
50

. (2) IndireCt-PDI 01 101 201 301 401 501 601 701 801 901 1001 PDI
a (3) NO-PDI |

@ 100

) Wy

Q
@ 50

0
1 101 201 301 401 501 601 701 801 901 100

Generation

P No-PDI not better than «-B, only wins as P1

P Indirect-PDI takes much longer to stabilize

29

o Ex: CS - JoeBot

P Is trained offline, thus it can learn
every strat.

P Online trained learned to ‘camp!

P GA not doable, because Games to
long
Kampf-NN is a FF-ANN(6,6,6,5), trained

with BP

Inputs(-1..1): Health, Distance to Enemy, Enemy Weapon, Weapon,
#Ammo, Situation (#Enemies,#team,mood)
Output: Jump, Duck, Hide, left/right, run/walk
3 memories:
Short-term: Enemies, 20secs
Long-term: bomb, Enemies, gen. Things, RR(10)
Waypoints and fights: sniping...

30

r Ex: CS - JoeBot

P Collision Net: FF-ANN(3,3,1)
» 3 Inputs are sensors in game (75 units long, 35°)
» Output: left/right

31

o . Ex: CS - JoeBot

Health SOM Distance SOM
P Number of Training instances too large

P Instead capture all inputs to FFN during a game and give
them to a SOM

P Look for differences that are very large, i.e. which the Net
does not know too well, and manually retrain them

P Pics are from SOM(90,100), 12k training inst., stop at d<1

(438 epochs), P3-500Mhz ca. 31h 2

