* Anomaly Detection

Brian Palmer

i What is an anomaly?

= the normal behavior of a process is
characterized by a model
= Deviations from the model are called anomalies.

= Example
= Applications versus spyware

= There is a model of what using the computer
involves; if the system notices communication with
strange hosts, it's an anomaly

= Attacks on networks

i Detecting Anomalies

= Anomalies are useful when nothing is known
about intrusions
= Modern systems like IDES combine anomaly
detection with known intrusion databases
= Two ways of modelling normal behaviour
= Models of normal behaviour can be the allowed
patterns (positive detection)
= Anomalous patterns (negative detection)
= Which do you think would be better?

Positive and Negative
i Detection

= Early research focused on positive
detection
= It seems smaller and simpler
= Advantages of negative detection
= More common in nature
= Same amount of information
= Easier to distribute

i Algorithms/Anomaly Detection

= N-gram auditing
= Finite automata
= System call sense of self
= Artificial Immune System

i N-Gram auditing

= Intrusions are correlated with abnormal

behaviour
= Events are logged into a symbolic audit
trail
= How to repres iS? Si

= Then use an n-
across the audit log to compare with
positive training data

i Finite Automata

= N-gram auditing is very simple
= Processes are complicated
= Use finite automata instead

= Hand constructing can be straightforward —
or hard

= Much better to let the computer do the
work (e.g., Baum-Welch algorithm for
HMM)

= But HMM calculation is expensive

i Training a Finite Automaton

= This approach outlined by Michael &
Ghosh

= Works on a training set of nonintrusive
patterns
= It must accept every element in the
training data

= That’s trivial — how can you do it easily?
(Hint: one way is too weak, another is too
strong)

i What is a finite automaton
= (S,f)

= A finite set S of states
= A transition mapping 7 such that given a

sequence of elements / £(s1,/)=s2 for
some s1,52in S

= Generalization from the DFA/NFA that
we’re probably all familiar with

i Using n-grams to construct it

= Each state is associated with one or more -
grams of audit information
= nis a parameter of the algorithm
= More than one r~gram for most states

= When we see a new r-gram, either create a
new state, or reuse an existing state

= Transition is the last /elements of the current r-
gram

= /is a parameter of the algorithm

i Deciding to create a state

= Ask one simple question

= “For the next /+~gram, can the automaton
already accommodate it?”

= The answer comes in three forms:

i Creating a State: Form 1

= The current state has a transition
matching last /elements of previous 7-
gram to a state associated with the new
/-gram
= Action: Done

i Creating a State: Form 2

= The current state has a matching
transition, but not to the correct state
(or there is no matching state).
= Create a state for the new r-gram if it does
not exist

= Create a transition from the current state
to the new n-gram’s associated state,
using the last /elements of the previous 7+
gram

i Creating a State: Form 3

= The current state has no outgoing edges that
correspond to last /elements of previous 7+
gram.

= If there is already a state assigned to the next 7+
gram, add a transition to it as previously

= If not, we assign it to a compatible state
= The authors quibble over good compatibility, but
go with longest matching prefix

= If there are no compatible states, then create a
new state

i Size of the automaton

= No s~gram has more than one state
associated with it

= Thus, no more than A” states for a
program with & unique audit events

= Total number of edges is bounded by A7/
= In practice, it is much smaller

i Example

e
S > S
4
R
._ s R
- R
Cx 30

i Confidence

= Rather than simply accepting or
rejecting, we should have a confidence
value in the automaton’s assertion
= If the current state exists, and there’s a

transition for / then the confidence that it
Is an anomaly is 1-P(taking this transition)

= P(taking this transition)=# of times it was
taken in training/# of times the current
state was encountered in training

i Confidence 2

= More absolute values:
= If the current state exists, but there’s no
transition, P(Anomaly)=1

= If the current state is not defined (i.e.,
previous state had no correct transition),
P(Anomaly)=0

i Performance

= Note that this is used for real-time
detection
= Very efficient
= Training is done in linear time

i Immune System

= The human immune response is a
driving metaphor
= T-cells are grown in the thymus and
accustomed to se/f peptides

= Ones that react to the self peptides are
censored; others are released into the

body [, & ¢=

i Simple notion of self

= We want to tag known software runs
with some identifier of self.

= Any anomaly should interfere with these
signatures

= Normal runs of the program should not
= But it should be able to run on arbitrary data

i System calls

= System calls are easily tracked by the
kernel for arbitrary programs
= Already requires a context switch
= Will be involved in any critical intrusion

= Claim: they form a useful “fingerprint”
for intrusions

11

i System call windows

= Similar to the n-gram auditing, we will
use a k element window and slide it
over a trace of system calls
= But rather than pay attention to the exact

order, we collect the k in the tail simply as
valid successors to the kin the head.

i Example: System Call Window

= Trace: open, read, mmap, mmap, open,
getrlimit, mmap, close

m Let A=3

call position 1 | position 2 | position 3

open read, mmap mmap,
getrlimit close

read mmap mmap open

mmap mmap, open, getrlimit,
open, getrlimit | mmap
close

getrlimit | mmap close

close

i Mismatches

= The likelihood that it is an anomaly against a
live run is found by counting the number of
mismatches in sequences

s Maximum number of mismatches for a
sequence of length L with lookahead of kis
k(L-K)+(k-1)+(k-2)+...+1=k(L-(k+1)/2)

s S0 # mismatches/Maximum # of mismatches
= confidence of anomaly

i Immune System as Algorithm

= Sequence of events form a string in a
universe U

= We have a set RS of these strings; we can
access only a sample S to train on

= Candidates are generated randomly and
censored against S
= We'll discuss the form of these candidates later on

= Those that fail to match any in S are retained
as active detectors

13

i Immune System Algorithm 2

= Each detector is independently
generated

= SO it's probabilistic that, given sufficient of
them, they’ll detect anomalies

= Works when given only positive examples
to train against (why is that important?)

= Done

i Artificial Immune System

= Hofmeyr adapted this for an online, dynamic
detector for network attacks
= More like a real biological system
= Immature, mature, and memory detectors present
in system
= Immature ones are deleted if they match a
connection

= Mature ones that are sufficiently discerning are
promoted to memory detectors, with extended
lifetime but lower threshold of activation

14

i Artificial Immune System 2

= Activation thresholds work to prevent
autoimmune disorders
= Metaphor to proteins’ avidity thresholds

= Temporal clumping works for single host
attacks

= To handle distributed attacks, each
successful detection lowers activation
threshold

= Each of these goes down over time

i Form of Detector

= In this system, a detector is
= An element of the set or
= An r-chunk — length r string along a fixed
position
= R-chunks are strictly more powerful
than rcb matching

15

i Different schemes

= Different choices are possible for most
of the crucial parameters

i Similarity of Sequences

= How close are two sequences of
events?

= What would be a good way to classify
their similarity?
= We want a distance metric

16

i Sequence Similarity Metrics

= Hamming Distance

= Distance in n-space
= Plot x,,...,.x, and y,,...,y, as points in /7

= Requires same-size sequences, large dimensions,
numerical approximation

= Outliers grossly affect this
= Largest common subsequence
= Define Sim(X,Y)=|LCS(X,Y)|/max(|X|,IY])
= Also seems to be known as r-contiguous bits (rcb)
= Various variants of this: linear filter, scaling, r-chunk

i Summary

= I've gone over 4 basic approaches to
detecting anomalies given positive
training data.
= These tend to be very efficient, but

specialized, at detecting oddities in
systems

= Useful in many areas of (computer)
security

17

i References

Machine Learning Techniques for the Computer
Security Domain of Anomaly Detection. PhD thesis,
Purdue University, W. Lafayette, IN, August 2000.

A Sense of Self for Unix Processes. Stephanie Forrest,
Steven A. Hofmeyr, Anil Somayaji, Thomas Longstaff.

Bollobas, B., Das, G., Gunopulos, D., Mannila, H.,
“Time-Series Similarity Problems and Well-Separated
Geometric Sets', Proc. of 13th Annual ACM
Symposium on Computational Geometry, To appear,
1998.
http://citeseer.ist.psu.edu/bollobas98timeseries.html

“Immunity by Design: An Artificial Immune System”
by Hofmeyr and Forrest

18

