
1

Anomaly Detection

Brian Palmer

What is an anomaly?

the normal behavior of a process is
characterized by a model

Deviations from the model are called anomalies.

Example
Applications versus spyware
There is a model of what using the computer
involves; if the system notices communication with
strange hosts, it’s an anomaly
Attacks on networks

2

Detecting Anomalies

Anomalies are useful when nothing is known
about intrusions

Modern systems like IDES combine anomaly
detection with known intrusion databases

Two ways of modelling normal behaviour
Models of normal behaviour can be the allowed
patterns (positive detection)
Anomalous patterns (negative detection)
Which do you think would be better?

Positive and Negative
Detection

Early research focused on positive
detection

It seems smaller and simpler

Advantages of negative detection
More common in nature
Same amount of information
Easier to distribute

3

Algorithms/Anomaly Detection

N-gram auditing
Finite automata
System call sense of self
Artificial Immune System

N-Gram auditing

Intrusions are correlated with abnormal
behaviour

Events are logged into a symbolic audit
trail

How to represent this? Simplify features

Then use an n-length sliding window
across the audit log to compare with
positive training data

In a shell, for example, not “cat file1.c”
but “cat <1>”

4

Finite Automata

N-gram auditing is very simple
Processes are complicated

Use finite automata instead
Hand constructing can be straightforward –
or hard
Much better to let the computer do the
work (e.g., Baum-Welch algorithm for
HMM)
But HMM calculation is expensive

Training a Finite Automaton

This approach outlined by Michael &
Ghosh
Works on a training set of nonintrusive
patterns

It must accept every element in the
training data
That’s trivial – how can you do it easily?
(Hint: one way is too weak, another is too
strong)

5

What is a finite automaton

(S,f)
A finite set S of states
A transition mapping f such that given a
sequence of elements l, f(s1,l)=s2 for
some s1,s2 in S
Generalization from the DFA/NFA that
we’re probably all familiar with

Using n-grams to construct it

Each state is associated with one or more n-
grams of audit information

n is a parameter of the algorithm
More than one n-gram for most states

When we see a new n-gram, either create a
new state, or reuse an existing state

Transition is the last l elements of the current n-
gram
l is a parameter of the algorithm

6

Deciding to create a state

Ask one simple question
“For the next n-gram, can the automaton
already accommodate it?”

The answer comes in three forms:

Creating a State: Form 1

The current state has a transition
matching last l elements of previous n-
gram to a state associated with the new
n-gram

Action: Done

7

Creating a State: Form 2

The current state has a matching
transition, but not to the correct state
(or there is no matching state).

Create a state for the new n-gram if it does
not exist
Create a transition from the current state
to the new n-gram’s associated state,
using the last l elements of the previous n-
gram

Creating a State: Form 3
The current state has no outgoing edges that
correspond to last l elements of previous n-
gram.

If there is already a state assigned to the next n-
gram, add a transition to it as previously
If not, we assign it to a compatible state
The authors quibble over good compatibility, but
go with longest matching prefix
If there are no compatible states, then create a
new state

8

Size of the automaton

No n-gram has more than one state
associated with it

Thus, no more than kn states for a
program with k unique audit events
Total number of edges is bounded by kn+l

In practice, it is much smaller

Example

9

Confidence

Rather than simply accepting or
rejecting, we should have a confidence
value in the automaton’s assertion

If the current state exists, and there’s a
transition for l, then the confidence that it
is an anomaly is 1-P(taking this transition)
P(taking this transition)=# of times it was
taken in training/# of times the current
state was encountered in training

Confidence 2

More absolute values:
If the current state exists, but there’s no
transition, P(Anomaly)=1
If the current state is not defined (i.e.,
previous state had no correct transition),
P(Anomaly)=0

10

Performance

Note that this is used for real-time
detection

Very efficient
Training is done in linear time

Immune System

The human immune response is a
driving metaphor

T-cells are grown in the thymus and
accustomed to self peptides
Ones that react to the self peptides are
censored; others are released into the
body

11

Simple notion of self

We want to tag known software runs
with some identifier of self.

Any anomaly should interfere with these
signatures
Normal runs of the program should not

But it should be able to run on arbitrary data

System calls

System calls are easily tracked by the
kernel for arbitrary programs

Already requires a context switch
Will be involved in any critical intrusion

Claim: they form a useful “fingerprint”
for intrusions

12

System call windows

Similar to the n-gram auditing, we will
use a k element window and slide it
over a trace of system calls

But rather than pay attention to the exact
order, we collect the k in the tail simply as
valid successors to the k in the head.

Example: System Call Window

Trace: open, read, mmap, mmap, open,
getrlimit, mmap, close
Let k=3

13

Mismatches

The likelihood that it is an anomaly against a
live run is found by counting the number of
mismatches in sequences
Maximum number of mismatches for a
sequence of length L with lookahead of k is
k(L-k)+(k-1)+(k-2)+…+1=k(L-(k+1)/2)
So # mismatches/Maximum # of mismatches
= confidence of anomaly

Immune System as Algorithm
Sequence of events form a string in a
universe U
We have a set RS of these strings; we can
access only a sample S to train on
Candidates are generated randomly and
censored against S

We’ll discuss the form of these candidates later on
Those that fail to match any in S are retained
as active detectors

14

Immune System Algorithm 2

Each detector is independently
generated

so it’s probabilistic that, given sufficient of
them, they’ll detect anomalies
Works when given only positive examples
to train against (why is that important?)
Done

Artificial Immune System
Hofmeyr adapted this for an online, dynamic
detector for network attacks

More like a real biological system
Immature, mature, and memory detectors present
in system
Immature ones are deleted if they match a
connection
Mature ones that are sufficiently discerning are
promoted to memory detectors, with extended
lifetime but lower threshold of activation

15

Artificial Immune System 2

Activation thresholds work to prevent
autoimmune disorders

Metaphor to proteins’ avidity thresholds
Temporal clumping works for single host
attacks
To handle distributed attacks, each
successful detection lowers activation
threshold
Each of these goes down over time

Form of Detector

In this system, a detector is
An element of the set or
An r-chunk – length r string along a fixed
position

R-chunks are strictly more powerful
than rcb matching

16

Different schemes

Different choices are possible for most
of the crucial parameters

Similarity of Sequences

How close are two sequences of
events?
What would be a good way to classify
their similarity?
We want a distance metric

17

Sequence Similarity Metrics
Hamming Distance
Distance in n-space

Plot x1,…,xn and y1,…,yn as points in Rn

Requires same-size sequences, large dimensions,
numerical approximation
Outliers grossly affect this

Largest common subsequence
Define Sim(X,Y)=|LCS(X,Y)|/max(|X|,|Y|)
Also seems to be known as r-contiguous bits (rcb)
Various variants of this: linear filter, scaling, r-chunk

Summary

I’ve gone over 4 basic approaches to
detecting anomalies given positive
training data.

These tend to be very efficient, but
specialized, at detecting oddities in
systems
Useful in many areas of (computer)
security

18

References
Machine Learning Techniques for the Computer
Security Domain of Anomaly Detection. PhD thesis,
Purdue University, W. Lafayette, IN, August 2000.
A Sense of Self for Unix Processes. Stephanie Forrest,
Steven A. Hofmeyr, Anil Somayaji, Thomas Longstaff.
Bollobas, B., Das, G., Gunopulos, D., Mannila, H.,
`Time-Series Similarity Problems and Well-Separated
Geometric Sets', Proc. of 13th Annual ACM
Symposium on Computational Geometry, To appear,
1998.
http://citeseer.ist.psu.edu/bollobas98timeseries.html
“Immunity by Design: An Artificial Immune System”
by Hofmeyr and Forrest

