Inverted Page :-*
Tables

& more

1993 by Jerry Huck (HP), Jim Hays (ESS)
presented by VLM on 21. February 2005

*__

[]
_H—~Open0fflce©rgj1/_wm
f \‘-—__.—-/

L Review Overview

- 1.1 What is VM / Page Table?

e 1.1.1 Linear PT
e 1.1.2 Forward-Mapped PT

- 1.2 Whatis a TLB?
2. Inverted (hashed) Page Tables
3. New TLB Techniques

- 3.1 Superpage

- 3.2 Subblocking
4. Clustered Page Tables

5. Evaluation
- different PT designs, different VM designs

e 6. Conclusion
“A: NMSU —CS573

P

~
OpenOfflce.org 1.1 1.1—VM-/-PT Review
What is a Virtual Memory System?

e 2"virtual Address space, mostly larger and flat (32bit)
e One/ Proccess

e VM System defines mapping VA — PA

e |ncludes mapping and Security Informtion

 Not single byte, but pages (4k or 8k), size of PT?

e Size too big to have 1 / Proc, two solutions

- Linear PT
- Forward-mapped PT

“A* NMSU - CS573 3 Inverted Page Tables

~
—OpenOfficeorgll — — .1=tinear
—
Linear Page Tables

Virtual address
DS for
mappings to

page table

VoY

Array of PTEs

Single, huge array residing in VA space, bottom-up access
- used by VAX-11 & MIPS R4000
e PT itself must be mapped seperately

> Reside in PA or mapped via reserved TLB entries
> Could use multilevel-trees or hashed PT to map themselves

 Multilevel Linear PT requires each intermediate node to be a page
 Needs 6 levels on 64bit systems
e OSF/1 on MIPS R3000 used 3 levels

“A: NMSU —CS573

P

—--Open0.f_f|ce orgll——
Forward- mapped Page Tables

Virtual address
I 12 13 Offset

IETENEIED
:

Physical address

e p-ary trees, top-down access, resides in PA space
Each level uses fixed bit fields in VPN

Intermediate nodes do not need to be a page

—» Can have different branching factors at different levels

Performs bad on sparse address spaces & needs about 7 levels on 64bit,
2 solutions to shortcircuit:

- Guarded PTs

— Region Lookaside Buffers
A NMSU - CS 573) €S

L]
—OpenOfficeorgll — — = R
—

\“—-_/

Page #1 Page #2 Page #3 Offset v/irtyal address
Guarded PTs [oz Toa T os [oue]

) @mﬂ { 0x3B2 | o;itr |
e Collapses entire levels of tree es / X Frame # Offset

Physical address

e Entry contains prefix & length L T L
uard / |r:|:j:-f"’ 17| only one valid
e Length field Gives OS great Page Directory R=aZEn / M er table
flexibility, can use different sizes fun| (&
of PTs & Ps
e Should balance tree

|
Wipny~ I g by B8
Page Mldd\j‘—"*"

I /'} table not needed,

Director
.2 if guard in place

PR |

Page Table

* can use n-assoc. for faster translation & further reducing size
e can also use RLB for Adr. in same Block to directly access deeper levels

Region Lookaside Buffers
e uses Buffer to store mappings to deeper PTs (Block locality)
e similar to reserved TLB entries for Linear PT

e used in HalL or called PTP cache in SuperSPARC

A NMSU - CS 573

%%%%%

0;9?101: ficeorg1.1

1.2=TLB

Translation Lookaside Buffer

o Fast, small buffer for complete V
to P translations

VPN is compared to tag, if match
data gives the PPN

e includes valid bit

e normally set-associative to reduce
conflict misses

- makes it a little slower

HW TLB uses FSM
> inflexible

e SW TLB can support every PT struc., seperate kernel/user handling code

Virtual Address

Page #

Offser

TLB

¥PN | PPN

Page Table

— PTE

TLB miss: use this

TLE hir: use this

Physical Address

Physical Page #

Physical Memory

> but inflict precise interrupt overhead, flushing of pipeline, reorder buffers, I-

Cache etc.

‘A* NMSU —CS573 7

Invefted Page Tables

—~— _
0pen0fflce.org 1 2 — Inverted-PTs

Inverted Page Tables
 For 64bit Page Table ludicrously big, size?

* Needs = 7 levels to keep Table size small

e |dea: PM size magnitudes smaller

—» build table only for existing (physical) pages, index with PA
> Entry gives VA

e 3 Problems:

- 10O devices that map into PA space create holes and waste space in
table

— can be fixed by only including mapped pages in table

> needs to search whole table for PA on TLB miss
— No aliasing possible—»use global aliases

e Solution
- use Hash-Function on PA —» Hashed Page Table

“A* NMSU —CS573 8 Inverted Page Tables

— .
OpenOfficeorg1] 2.1 — Hashed PTs
Hashed Page Tables

e Hash Funct. maps VPNto _—=2%=

| VPN | offset |

—>
—>

> Hash Anchor Table giving
possible mappings (IBM (hash >(+)
System/38) or

> directly to a bucket
e use chaining or Overflow Table
o fixed size only big enough to cover available Memory
» theory suggests prime-number size, while practice dictates power of 2
e includes PID in entry since Table is global
e for aliasing just add more than one entry in chain (PID)
e fixed, high (200%) overhead *» good for sparse address spaces

e reduce next pointer by including only offset or avoid by multiple PTEs /
Bucket (PowerPC)

cut bits from VA — can be inferred since entries map to same bucket
‘A NMSU - CS573 9 Inverted Page Tables

Y

Y

—1
F=>{
F—m

=

Hash base : Hash table

> > 1

;‘ .
0pen0fflce.org 1] 3:1— Superpage TLB

New TLB Techniques - Superpages

 Two approaches to reduce TLB miss ration and store
mapping more compactly

* Superpages: Pages with power-of-two size of base page size
 Need to be aligned in both VA & PA space

V| 5 Pad PPN 7| Allr
63 99 40 12 0

Superpage mapping for size of 2°

e Could be used for kernel/shared pages
o like LPTs/FMPTs good for dense, localized address spaces

“A* NMSU - CS573 10 Inverted Page Tables

; .
OpenOfficeorg1] 3:2— Subblocking TLB
New TLB Techniques - Subblocking

* Complete-SB: Several base pages managed with one TLB tag
> stores multiple PPNs / tag »increased data size
e includes all PPN, need to be only aligned in VA

> Introduces Block and Subblock misses

Vis.o | Pad PPN 7| Attr
48 40 16 12 0

Partial-subblock mapping (subblock factor 16)

Partial-SB: stores only one PPN but multiple valid bits

> Need to be aligned in both VA & PA space
> but not all pages need to be mapped as in Superpages or CompleteSB

« How can we adapt these to Page Tables?

“A* NMSU —CS573 11 Inverted Page Tables

—~— _
OpenOfficeorg1] 3.3 —Adapting
Adapting Superpages/Subblocking to PTs

o SP/SB useless if OS doesn't support them with proper mem. alloc
and they are not replicated in the PTs, thus 3 Solutions:

* Replicate PTEs: store a superpage PTE @ every base page
covered by the superpage

—» space overhead, 16 PTEs for one 64k Superpage

* Multiple PTs: make one PT for every superpage size in use and
search each for mapping

> smaller overhead, but takes longer

* Linear/FM Nodes: store Superpage pointer at intermediate nodes

> FMT can support any SP size by varying branching factor
> whereas LPT cannot

“A* NMSU —CS573 12 Inverted Page Tables

0;9?101: ficeorg1.1

Clustered Page tables ===

Similar to Hashed Page Tables

Stores mappings for consecutive pages
with a single tag (HPT with subblocking)

Subblock factor can be chosen depending
on address space sparsity

Less overhead than HPT
has fewer buckets / shorter list
> Improves access time

can require more memory if mem. use is
very sparse » adjust subblock factor

access time worse if PTEs span multiple
cache lines

first used by Solaris 2.5 on UltraSPARC

- NMSU — CS 573 13

4 —CPT

| BOfi | Offset

¥

—

o7 ™
'\h ash__),

1

v

il

| + —

. L

b, iclerr

Hash base

VPBN Tag

next

Pad PPNO

Attr0

Pad PPN1

Attr1

Pad PPN2

Attr2

<|[€|<|<

Pad PPN3

Attr3

63

0

Clustered PTE (Subblock factor 4)

Invérted Page Tables

;‘ .
OpenOfflce.org 1.1 4:1— SB-&SP-in CPTs
Partial-subblock and Superpage PTEs in CPTs

VPBN Tag VPBN Tag
next next
V | Pad |S| PPNO Attro Vis.0 |Pad|S PPN Attr
V | Pad |5| PPN1 Attri 63 Partial-subblock PTE 0
V | Pad |S| PPN2 Attr2
V | Pad |S| PPN3 Attr3 VPBN Tag
63 0 next
V| SZ |Pad|S PPN Attr
Clustered (complete-subblock) PTE 63 Superpage PTE 0

« CPT resembles complete-subblock TLB entry

> CPTs can be enhanced to support partial-subblocking and
superpages

e Use special flag (S field) to distinguish PTE types
e when partial-subblocking use same subblock factor as the CPT

“A* NMSU —CS573 14 Inverted Page Tables

—_—~ _
0pen0fflce.org 1. 5.1 — Evaluation

Evaluation Setup 1

Solaris 2.1 on a SparcServer 10, testing with 32bit workload
Too complicated to implement all PT variations in real System
Instead a TLB and PT simulator is built into kernel

Studied aspects:

> PT size
> PT access time, by measuring the average number of chache

lines accessed per TLB miss
> Average number of cache lines per PT traversion

“A* NMSU —CS573 15 Inverted Page Tables

—— .
—OpenOfficeorgll — —
—

O —
Page Table Size Eval FEge a0 ERHER
for single-page-size tables

e Figure is normalized to ° L ;

HTP size 41 + * + Linear “6-level”
e “1-level” assumes that 3¢ + 4 ORI AP

Intermediate nodes 21 @ " % Linear “1-level”

take zero space o ® md g g - Clustere
e Result: CPTs are R RO

smallest ﬁ&i fj“ ¢@ﬂ?&q@;@ﬁ S ﬁi&(@\

%%%%%

——————

——

:Qp;e.ﬂmflce.:o'ﬁgjz.1wwﬁ
f e ——
Page table sizes
for hashed/clustered page table variations Page Table
1.0 Size Eval 2
0.8 + * + Clustered
*
0.6+ ® + Hashed+Superpage
- + ¥
D4+ + g o P "R » Clustered+Superpage
»
0.2+ -}Ic_ * ¥ Clustered+Partial-subblock
5 - t ¥ g * % %‘

e using 4k base pages

e 64k superpages

e or subblock factor 16

o Result: CPT with partial-subblocking best

“A: NMSU - CS573 17 ﬁ&g

——————

[
:Qpﬁﬂ@ﬁlce:oﬁgiﬂwm
— —

Page table access time

Superpage TLB Pa.ge Table

i Access time Eval
8+ + Linear

oM E 45 AF 35 AE I S W
6+ + Forward-mapped
A4+ x Hashed
5] » i " W & x Clustered

r T * 4 3 % X 2 % ¥

@“@c@;&ﬁ@@%‘ﬂ@ FE s

e TLB fully associative
e 64 entries
o 4K base page size, 64k superpages

e again: CPTs best
“A* NMSU —CS573 18 es

—— .
—OpenOfficeorgll — — =
—

Page table access time
Complete-subblock TLB

Page Table
Access time Eval 2

50 _
40 + + Linear
x
X Fol d- d
30 + i + Forward-mappe
1 X Hashed
20 ") v . "
10 + % Clustered
+ + + + + + + + + +
* k ¥ ¥ ¥ ; X % % %
& A &£ @ B e o
§ cﬁ’;%“ o ﬁ“éﬁ&‘? & q‘gﬁ g

e Subblock factor 16; using complete-subblock prefetching
e HPT performs disatrous

 Complete subblock entries are sensitive to cache line size
‘A" NMSU - CS573 19 ﬁ}eﬁ

OBEHOffice.org 1.1 5.2=Eval2

Different VM System Organizations Eval

2KB Root Fage Tabls 4KB Root Page Table

F\ Unmagpped Physical Memoty r\ Unmapped Physical Memory
+ ‘-H‘E""i. + “"“‘\‘ Mapped Virtual Memory
IODOODDDDooDoooDo Mappad Memory ———————

2MB User Page Table sddrassad physically 4ME Karnsl Pags Table Komel
Pags
Mapped Memory f Pags Tables Tapls
wirtually [I |
4GB Kamel Virual Addrees Space / Baze} \

CI— I 1 T T T T T 1 T T T 11]
2GEB Uear Virtual Address Space

L
Figure 3: The BSD/Aniel page table organization. The Intel page table is 2GB User Virtual Address Spaca

similar to the MIPS and MOTLE page tables; it is a two-tiered hierarchical

table. However, unlike the other two, it is walked in a top-down fashion. Figure 2: The Mach/MIPS page table organization. Mach as imple-
Therefore, the user page table is a set of page-sized tables (4KB PTE pages) mented on MIPS has a three-tiered page table. A user-Hevel address space is
that are not necessarily contigucus in either physical space or virtual space mapped by a 2MB table in kemel space at an offset aligned on a 2MB bound-
{they do not need 10 be contiguous in virtual space because the table is never ary and related to the process 1D of the user-level application: the virtual base
treated as a unit; it is never indexed by the VPN). These 4KB PTE pages map address of the table is essentially Base + (processiD " 2MB). The top 4MB of
4MB segments in the user's virlual address space. The 4MB segments that the kemel's virlual address space is a page table that maps the 4GB kemel
make up the user's address space are contiguous in virtual space. space. This kernel table is in turn mapped by a roct table in physical memory.

e Intel: 21, hirarchic Table, top-down * Mach/MIPS: 3| Table
e HW, f-a. 128 I&D TLB * split SWTLB

e 4kb not cont. PTs map 4mb in user User space mapped by aligned
space that is cont. in VAS 2mb in 4gb kernel Table, which

top 4mb map the whole table
e 2kb root table maps these PDs i *
e 4kb phys. root table maps top

| 4mb :
‘A* NMSU —CS573 20 Inverted Page Tables

- []
OpenOfficeorg1]
Eval2 — MIPS + PA-RISC

2KB Root Page Tabls

Unmapped Physical Mamaory

2MB Usar Page Table
¥
| |

* “"“‘»‘ Mapped Virtual Mamory
l

L
2GE8 Usar Virual Addreas Space

Figure 1: The UltrixMIPS page table organization. The Ui page table
on MIP3 is a simple two-tiered table. The user address space is the bottom
258 of the hardware's address space; the top 2G8 belongs to the kernel. A
ZKB table wired down in physical memory maps each user page table.

ATy
ENGR
u*: R
Z 2R\~
[i
1"L’E_=.“'5‘§ .

Ultrix/MIPS: 2I, bottum-up

split SW TLB, 128 f-as. I&D TLB
(16 res. for kernel mappings)

2gb user space mapped by 2mb
LPT in VAS

all User PDs mapped by 2kb root
Table in PAS

5.2 — Eval2-cont'd

[Virual Page Number | |]
+ _ HPT AT

HASH -
FURCTION i |
X -
|
Index into the \]
Hashad Page — gz
Table

1:1 rafio of entries to
physical pages yiside E
L}

avarage chain length 1.5
— b
K -_-_'_'_“‘—'—-—-_._.___h

HASHED PAGE ey
TRHLE MEMORY

Figure 4: The PA-RISC page table organization. The PA-RISC hashed
page table is similar in spint to the classical inverted page table, but it
dispenses with the hash anchor table, thersby eliminating cne memory
reference from the lookup algorithm. Since there s not necessarily a 1:1
cofrespondence between entries in the table and page frames in the system,
the PFN must be stored in the page table entry, thereby increasing its size.
While the collision-resolution table is optional, we include it in our simulation.

PA-RISC: IPT with HAT,
overflow table

128 f-a. 1&D TLB
16b PTEs

h-f: XOR of upper VA and lower
VPN

NMSU — CS 573 21

Invefted Page Tables

; .
OpenOfficeorg1] 5.2.1 —Findings
Eval2 — Findings

« HW TLB (i.e. finite-state-machine) does not inflict so much overhead but
IS inflexible

o thus x86 organization is best, even with the 2 accesses/TLB miss

 when OS uses intelligent Page placing (dense VAS) IPTs can impact data
chaches less than LPTs, although their PTEs are 4x bigger

« SW TLB miss handling can account for more than 10%, up to 40% of
kernel execution time

e Taking everything into account, cache misses as result of VM moving
data around, TLB miss handling, VM Interrupts etc. the total overhead of
the VM System is about 10%-30%

e Intel and anti-technique (purely SW) NO-TLB least dependet on Int. when
caches grow larger

—» Precise interrupt handling need more attention, because of VM
—» future VM organizations should use SW programmable HW TLBs
and HPTS/CPT's because of 64bit

A NMSU —CS573 22 Inverted Page Tables

—_—~ _
0pen0fflce.org 1. 6.— Canclusion

Conclusion
Conventional PT mechanisms not practical for 64bit

FMPTs almost worthless in 64bit even with shortcircuiting
LPTs have low overhead and miss penalty
—» could work when mappings to table itself are hashed

e Subblocking & Superpaging increase TLB Hit ratio and most
PTs can be changed to support both techniques

e LPTs/FMPTs are acceptable on dense address spaces
« HPTs better for sparse address spaces

o CPTs augment HPTs with Subblocking & Superpaging and are
even more efficient

+» CPTs best known solution for big (64bit) address spaces

A NMSU —CS573 23 Inverted Page Tables

-~
—OpenOfficeorgll— — — 7./ —
J S —— S ——— S ——— S ——— S —— S ——" S ——

Questions?

‘A" NMSU - CS573 24 ﬁes

