
Inverted Page
Tables

& more

1993 by Jerry Huck (HP), Jim Hays (ESS)

presented by VLM on 21. February 2005

0 - Overview

● 1. Review

– 1.1 Wha t is VM / Page Table?
● 1.1.1 Linear PT
● 1.1.2 Forward-Mapped PT

– 1.2 Wha t is a TLB?

● 2. Inverted (hashed) Page Tables

● 3. New TLB Techniques

– 3.1 Superpage

– 3.2 Subblocking

● 4. Clus tered Page Tables

● 5. Evalua tion

– different PT des igns , different VM des igns

● 6. Conclus ion

Overview

2 Inverted Page Tables NMSU – CS 573

1.1 – VM / PT Review

● 2nd virtua l Address space , mos tly la rger and fla t (32bit)
● One / Proccess
● VM Sys tem defines mapping VA PA
● Includes mapping and Security Informtion
● Not s ingle byte , but pages (4k or 8k), s ize of PT?
● Size too big to have 1 / Proc, two solutions

– Linear PT

– Forward-mapped PT

What is a Virtua l Memory Sys tem?

3 Inverted Page Tables NMSU – CS 573

1.1.1 – Linea r PTs

● Single , huge a rray res iding in VA space , bottom-up access

– used by VAX-11 & MIPS R4000

● PT itse lf mus t be mapped sepera tely

➔ Res ide in PA or mapped via reserved TLB entries

➔ Could use multileve l-trees or hashed PT to map themselves

● Multilevel Linea r PT requires each intermedia te node to be a page

● Needs 6 levels on 64bit sys tems

● OSF/1 on MIPS R3000 used 3 levels

NMSU – CS 573

Linear Page Tables

4 Inverted Page Tables

1.1.2 – Forward-mapped PTs

● n-a ry trees , top-down access , res ides in PA space

● Each level uses fixed bit fie lds in VPN

● Intermedia te nodes do not need to be a page

– Can have different branching factors a t different levels

● Performs bad on spa rse address spaces & needs about 7 levels on 64bit,
2 solutions to shortcircuit:

– Guarded PTs

– Region Lookas ide Buffe rs

NMSU – CS 573

Forward-mapped Page Tables

5 Inverted Page Tables

1.1.2a – GPTs & RLBs

● Collapses entire levels of tree

● Entry conta ins prefix & length

● Length fie ld Gives OS grea t
flexibility, can use different s izes
of PTs & Ps

NMSU – CS 573

Guarded PTs

6 Inverted Page Tables

Region Lookas ide Buffers
● uses Buffer to s tore mappings to deeper PTs (Block loca lity)

● s imila r to reserved TLB entries for Linea r PT

● used in HaL or ca lled PTP cache in SuperSPARC

● Should balance tree

● can use n-assoc. for faster translation & further reducing size

● can also use RLB for Adr. in same Block to directly access deeper levels

1.2 – TLB

● Fas t, small buffer for complete V
to P trans la tions

● VPN is compared to tag, if ma tch
data gives the PPN

● includes va lid bit

● normally se t-associa tive to reduce
conflict misses

– makes it a little s lower

NMSU – CS 573

Trans la tion Lookas ide Buffer

7 Inverted Page Tables

HW TLB uses FSM
➔ inflexible

● SW TLB can support every PT struc., seperate kernel/user handling code
➔ but inflict precise interrupt overhead, flushing of pipeline, reorder buffers, I-

Cache etc.

2 – Inverted PTs

● For 64bit Page Table ludicrous ly big, s ize?

● Needs ≥ 7 levels to keep Table s ize small

● Idea : PM s ize magnitudes smaller

– build table only for exis ting (phys ica l) pages , index with PA

➔ Entry gives VA
● 3 Problems:

– IO devices tha t map into PA space crea te holes and was te space in
table

– can be fixed by only including mapped pages in table
➔ needs to search whole table for PA on TLB miss

– No alias ing poss ible use global a liases
● Solution

– use Hash-Function on PA Hashed Page Table

NMSU – CS 573

Inverted Page Tables

8 Inverted Page Tables

2.1 – Hashed PTs

● Hash Funct. maps VPN to

➔ Hash Anchor Table giving
poss ible mappings (IBM
Sys tem/38) or

➔ directly to a bucket

NMSU – CS 573

Hashed Page Tables

9 Inverted Page Tables

● use chaining or Overflow Table

● fixed size only big enough to cover available Memory

● theory suggests prime-number size, while practice dictates power of 2

● includes PID in entry since Table is global

● for aliasing just add more than one entry in chain (PID)

● fixed, high (200%) overhead good for sparse address spaces

● reduce next pointer by including only offset or avoid by multiple PTEs /
Bucket (PowerPC)

● cut bits from VA – can be inferred since entries map to same bucket

3.1 – Superpage TLB

● Two approaches to reduce TLB miss ra tion and s tore
mapping more compactly

● Superpages: Pages with power-of-two s ize of base page s ize

● Need to be a ligned in both VA & PA space

NMSU – CS 573

New TLB Techniques - Superpages

10 Inverted Page Tables

● Could be used for kernel/shared pages

● like LPTs/FMPTs good for dense, localized address spaces

3.2 – Subblocking TLB

● Complete-SB: Severa l base pages managed with one TLB tag

➔ s tores multiple PPNs / tag increased da ta s ize

● includes a ll PPN, need to be only a ligned in VA
➢ introduces Block and Subblock misses

NMSU – CS 573

New TLB Techniques - Subblocking

11 Inverted Page Tables

➔ Need to be aligned in both VA & PA space
➔ but not all pages need to be mapped as in Superpages or CompleteSB

● How can we adapt these to Page Tables?

Partial-SB: stores only one PPN but multiple valid bits

3.3 – Adapting

● SP/SB useless if OS doesn't support them with proper mem. a lloc
and they a re not replica ted in the PTs , thus 3 Solutions :

● Replicate PTEs: s tore a superpage PTE @ every base page
covered by the superpage

 space overhead, 16 PTEs for one 64k Superpage

● Multiple PTs: make one PT for every superpage s ize in use and
search each for mapping

➔ sma ller overhead, but takes longer

● Linear/FM Nodes: s tore Superpage pointer a t intermedia te nodes

➔ FMT can support any SP s ize by va rying branching factor

➔ whereas LPT cannot

NMSU – CS 573

Adapting Superpages /Subblocking to PTs

12 Inverted Page Tables

4 – CPT

● Simila r to Hashed Page Tables

● Stores mappings for consecutive pages
with a s ingle tag (HPT with subblocking)

● Subblock factor can be chosen depending
on address space spars ity

● Less overhead than HPT

● has fewer buckets / shorter lis t
➔ improves access time

● can require more memory if mem. use is
very sparse adjus t subblock factor

● access time worse if PTEs span multiple
cache lines

● firs t used by Solaris 2.5 on UltraSPARC

NMSU – CS 573

Clus tered Page tables

13 Inverted Page Tables

4.1 – SB & SP in CPTs

● CPT resembles comple te-subblock TLB entry
➔ CPTs can be enhanced to support pa rtia l-subblocking and

superpages

● Use specia l flag (S fie ld) to dis tinguish PTE types

● when partia l-subblocking use same subblock factor as the CPT

NMSU – CS 573

Partia l-subblock and Superpage PTEs in CPTs

14 Inverted Page Tables

5.1 – Eva lua tion

NMSU – CS 573

Evalua tion Se tup 1

15 Inverted Page Tables

● Solaris 2.1 on a SparcServer 10, testing with 32bit workload

● Too complicated to implement all PT variations in real System

● Instead a TLB and PT simulator is built into kernel

● Studied aspects:

➔ PT size
➔ PT access time, by measuring the average number of chache

lines accessed per TLB miss
➔ Average number of cache lines per PT traversion

5.1.1 – PT s ize

NMSU – CS 573

Page Table S ize Eva l

16 Inverted Page Tables

● Figure is normalized to
HTP size

● “1-level” assumes that
intermediate nodes
take zero space

● Result: CPTs are
smallest

5.1.2 – PT s ize

NMSU – CS 573

 Page Table
Size Eva l 2

17 Inverted Page Tables

● using 4k base pages

● 64k superpages

● or subblock factor 16

● Result: CPT with partial-subblocking best

5.1.3 – PT Access time

NMSU – CS 573

 Page Table
Access time Eva l

18 Inverted Page Tables

● TLB fully associative

● 64 entries

● 4K base page size, 64k superpages

● again: CPTs best

5.1.4 – PT Access time

NMSU – CS 573

 Page Table
Access time Eva l 2

19 Inverted Page Tables

● Subblock factor 16; using complete-subblock prefetching

● HPT performs disatrous

● Complete subblock entries are sensitive to cache line size

5.2 – Eva l2

NMSU – CS 573

 Diffe rent VM Sys tem Organiza tions Eva l

20 Inverted Page Tables

● Intel: 2l, hirarchic Table, top-down

● HW, f-a. 128 I&D TLB

● 4kb not cont. PTs map 4mb in user
space that is cont. in VAS

● 2kb root table maps these PDs

● Mach/MIPS: 3l Table
● split SW TLB
● User space mapped by aligned

2mb in 4gb kernel Table, which
top 4mb map the whole table

● 4kb phys. root table maps top
4mb

5.2 – Eva l2 cont'd

NMSU – CS 573

 Eva l2 – MIPS + PA-RISC

21 Inverted Page Tables

● Ultrix/MIPS: 2l, bottum-up

● split SW TLB, 128 f-as. I&D TLB
(16 res. for kernel mappings)

● 2gb user space mapped by 2mb
LPT in VAS

● all User PDs mapped by 2kb root
Table in PAS

● PA-RISC: IPT with HAT,
overflow table

● 128 f-a. I&D TLB

● 16b PTEs

● h-f: XOR of upper VA and lower
 VPN

5.2.1 – Findings

NMSU – CS 573

 Eva l2 – Findings

22 Inverted Page Tables

● HW TLB (i.e. finite-state-machine) does not inflict so much overhead but
is inflexible

● thus x86 organization is best, even with the 2 accesses/TLB miss
● when OS uses intelligent Page placing (dense VAS) IPTs can impact data

chaches less than LPTs, although their PTEs are 4x bigger
● SW TLB miss handling can account for more than 10%, up to 40% of

kernel execution time
● Taking everything into account, cache misses as result of VM moving

data around, TLB miss handling, VM Interrupts etc. the total overhead of
the VM System is about 10%-30%

● Intel and anti-technique (purely SW) NO-TLB least dependet on Int. when
caches grow larger

 Precise interrupt handling need more attention, because of VM
future VM organizations should use SW programmable HW TLBs
and HPTs/CPTs because of 64bit

6 – Conclus ion

NMSU – CS 573

Conclus ion

23 Inverted Page Tables

● Conventional PT mechanisms not practical for 64bit

● FMPTs almost worthless in 64bit even with shortcircuiting

● LPTs have low overhead and miss penalty

 could work when mappings to table itself are hashed

● Subblocking & Superpaging increase TLB Hit ratio and most
PTs can be changed to support both techniques

● LPTs / FMPTs are acceptable on dense address spaces

● HPTs better for sparse address spaces

● CPTs augment HPTs with Subblocking & Superpaging and are
even more efficient

CPTs best known solution for big (64bit) address spaces

7 – Finé

NMSU – CS 573

Ques tions?

24 Inverted Page Tables

