CS 473
Final Exam
December 13, 2002

The following exam is open book and open notes. You may feel free to use whatever additional reference material younwish, but
electronic aidsare allowed. Please note the following instructions. There will be a ten point deduction for failure to comply with them:

e start each problem on a new sheet of paper

e write your social security number, but not your name, on each sheet of paper you turn in

e show your work whenever appropriate. There can be no partial credit unless | see how answers were arrived
e be succinct. You may lose points for facts that, while true, are not relevant to the question at hand

You have until 10:00 AM to finish the exam.
1. (20 points)

(a) Multiply the following two IEEE floating point numbers together (using the floating point multiplication algorithm):
3£e0000016 * 4040000016.

First, interpret the numbers:

OS(_)1111111 11000000000000000000000
ign:

Exponent: 01111111

Significand 1.11

0 10000000 10000000000000000000000
Sign: 0

Exponent: 10000000

Significand: 1.1

Now calculate result:
Sign:s = S1” So= 0
ExponentE = Ej+ E»- 01111111 = 10000000

Significand:
1.11
X 1.1
1.11
+ A11
10.101
Renormalize:

Exponent 10000000 + 1 = 10000001
Significand= 1.0101.

Combine:

0 100000001010-0
40a80000

(b) Convert your result into human-readable decimal format.
Sign: 0
Exponent: 10000001
Significand: 1.0101

Denormalize: significand becom&681.01 , = 5.25 g

Grading:

Problem in five parts: conversion of each operand, actual multiplication, combination of result into IEEE format, conversion of
result. Each part 4 points (so 16 points for 1a, 4 for 1b)

[Penalty | Error \
-2 Renormalization
-2 Hiddden bits
-1 Bizarre shifting on multiplication

-1 Forgot to subtract 01111111
-1 Subtracted instead of adding on renormalizatipn

. (15 points) Draw a Gantt chart showing how the following code will be executed on a MIPS processor, assuming all possibl
forwarding, stalling onlw when necessary, and a 1-cycle branch delay (no delayed loads or branches). Use arrows to show tt
forwarding between instructions.

1w $1, 100(%2) _A_A_A_Av

addi $3, $1, 1 L L1 Stall waiting for lw; forward MEM to EXE
beg $0, $0, label (T I O B

lui $6, 12 Instruction isn’t executed

add $1, $2, 33 Instruction isn’t executed

label: 1w $2, 400($1)

(I N I
subi $6,$3, 200 _A_A_AVA_I
(T

1w $12, 64 ($6)
SwW $12, 20(%$5)

Forward from EXE to EXE
No stall; forward MEM to MEM

Grading:
7 instructions executed: 2 points per instruction. 1 point freebie
| Penalty | Error \

-2 Executed skipped instructions

-1 Missed/extra stall

-1 Missed/extra forward

0 4-cycle instruction

-2 Issue 4 instructions per cyclg

Common errors:

Forgot that stalls “ripple” - instruction following a stalled instruction has to delay a cycle due to structural hazard
(second and third instruction)

Forgot that you can forward from a Iw to a sw without a stall (last two instructions)
Didn’t take branch (instructions 4 and 5)

. (10 points) Draw a Gantt chart showing how the following code will be executed on a CDC, using the assumptions from the note
X1I<-X2*X3 L1 1111110

X4<-X5*X6 (T Y T Y O B

X1<-X0/X7 Fimord”(X]%...........................m

X3<—X4*X1 . Second order (X1) L L
XA<-X5+X6 " Third order (X4) ‘

X5<-X1+X3 First order (adder) 2nd (X3) L
Grading:

6 instructions; 2 points per instruction. 3 points freebie

[Penalty | Error
-1 4-cycle multiply
-1 Missed conflict
-1 10-cycle add
0 Didn’t show forwarding (I forgot to ask for it
-1 Multiple issue (not go) per cycle

4. (35

points) Suppose a computer system, using a 32 bit physical address, has a 16KB, 4-way set-associative cache with a 16

block size.

(a) How would a physical address be broken down for cache lookups?

(b)

(©

The 16 byte block size implies a 4 bit offset field.

There are 16KB/16B = 1024 blocks; since it's 4-way set associative there are 1024/4 = 256 sets so the index field is 8 bits.
The tag is 32 - (8 + 4) = 20 bits.

Now suppose this same computer system also has a 32 bit virtual address, a virtual memory system just like Intel’s, anc
64-entry, 4-way set-associative TLB.

How would a virtual address be broken down for TLB lookups?

Since the VM system is borrowed from Intel it uses a 12 bit offset. The TLB has 64/4 = 16 sets, so there is a 4 bit set numb
The TLB tag is 32 - (12 + 4) = 16 bits.

Would it be possible to perform TLB and cache lookups simultaneously in this computer?

Yes. The cache offset+index fields are no wider than the VM offset field.

Here are some relevant contents of the computer’s TLB, cache, memory and the PDBR:

TLB

Index Tag Valid Contents
7 22fa 1 000c2025
7 5767 0 5ca8b39%e
7 696¢C 0 0la2fe7f
7 696¢ 1 0009a043
b 22fa 1 00047003
b 5767 0 000c2025
b 5767 1 5ca8b39e
b 696¢ 0 0039707f
c 22fa 1 0039707f
c 22fa 1 00047003
c 696¢ 0 000c2025
c 696¢ 1 00149025

Cache
Index Tag Valid Contents (4 bytes at given offset)
o 8 4 0

11 00397 0 b55d3fdl 2cb265fc 729df029 79f0c9ab5
11 Oacab 0 alll2079 7e0f2618 d2225f7e 3cadc0d5
11 28fd3 0 6a7fd8le e2feabl6 eacfbcf6 71201139
11 77223 1 deaee8ld 06967fac £d96b0a3 Teelfbcb
47 00149 0 89ccead7 96d701e8 84ce6l23 5839bff8
47 2bc3b 1 01457al6 046af216 1658f4ad 05691ab3
47 6d224 0 00fla2cd 3cfb6a72 af09%edd bd6f7564
47 Th483 0 8fe23130 fde64f24 2c6e3dld 5a92f7b0
cl 000d7 1 4cad24f7 a30ce94f T6£f7b80c ebclbeel
cl 6cdbe 0 0a87c67c 4adeb8ab5 42b931ca 5Sacc9l05
cl 759e2 0 c43123al 0e3e097d 40a6a704 12d0dS9bd
cl 78beb5 1 34bbc2cf ff113e65 ebclbeel e33fea7a

Memory
Address Data
0004c9dc 0039707f
0009aeac 000d7003
000c2b30 00149025
000d7cl4 T76f7b80c
0012a22c 0009a043
0012a574 0004c067
0012a694 000c2025
0014947¢c 5ca8b39%e
0039711c O0Olaz2fe7f

PDBR =0012a000

(d) For each of the following attempted memory operations, what happens? Be sure to say whether TLB is a hit or a miss (al
why, if a miss) cache is a hit or a miss (and why, if a miss), whether there are any protection violations, and whether there
a page miss. If the result is that data is returned to the program, give the value returned (assume a 4-byte read). If you he
a page fault or a protection violation, there’s no need to look in the c&fimember, the cache uses physical addresses.
Address Mode Operation

i. 696ccdic User Write
ii. 22fabcld Kernel Read
iii. 5767711c Kernel Write

i. First, see if we can find the translation in the TLB. For TLB lookup we divide the addré&@6asc 47c . Looking in
TLB setc, we find a tag 0f696¢c on a valid translation, so our page table entry(d8149025 (the fact that there is
also an invalid entry with the same index and tag is no problem; only valid entries matter. The fact that there are two
valid entries in the set with tag2fa is an error on my part, but since pag2fac doesn’t turn up in the problem it’s
not a serious one). The PTE tells us that the page is in memory (bit 0) and a user can access the page (bit 2), but car
write (bit 1). So it's a protection fault.

ii. Again, start with the TLB. Looking in sbt tag22fa , we have another TLB hit; this time the PTED80d7003 . This
is also a page hit; we're in kernel mode so the U bit being 0 doesn’t matter and we're reading so the W bit being 0
doesn’t matter.
Our phyical address i900d7c14 . Looking in cache setl we find tag000d7 is valid, so we read the value
76f7b80c from offsetd.

iii. TLB set7 tag5767 appears, but is not valid. So we need to go to the tables in memory.
The directory entry is a@012a574 , and contain004c067 . We're valid and have no protection violations, so we
go on to the page table entry 8004c9dc , which contain©039707f . Once again no protection violations, so the
address we're writing to i9039711c .
Looking in cache again, sétl tag 00397 is invalid. So data is read from the 16 bytesO&397110 into any of the
three invalid blocks of cache s&l, and the new value is written into offsebf the block (oops — | didn't give you any
of those values...). If it's a write-through cache (I didn’t specify), it'll also write the value to memory.

Grading:
Parts 4a-4b: 5 points each, 4c2 points, 4(d)i 5, 4(d)ii 8 points, 4(d)iii 10 points
[Penalty | Error \

-2 field width wrong

-2 4c forgot “implied why”

-2 4d didn't look in TLB

-2 4(d)ii, 4(d)iiiDidn’t look in cache

-1 Page fault vs. protection violation
-1 4(d)i TLB miss
-1 4(d)iii returned value on write

5. (20 points) A particular computer system is capable of executing 2 billion instructions per second. It has a disk drive that has :
average seek time of 10 msec (a bit slow by today’s standards, but easy to work with), and turns at 6000 RPM (also a bit slo
but also easy to work with). The disk is capable of transferring 20 million bytes per second. This computer system is executing
program that requires it to repeatedly execute transactions requiring the following sequence of operations:

e Spend 1 million instructions calculating its next sequence of reads and writes.
e Read 5 blocks from random locations on the disk. Each block is 4000 bytes.
e Spend 10 millions instructions processing the data.

Write one (4000 byte) block to a random location on disk.

(a) How many of these transactions can this system execute per second?

(b)

The times for the transaction steps are:

Processing(10+1) x 10°/2x 10° =55 x 1073

10: (5+1)(10x1034+5x 10344 x 10°/20x 10°) = 6(10+5+.2) x 103 =912x 103

So, each transaction takes. & 102 seconds; the system can process slightly more than ten transactions per second.

You are given the option of doubling the performance of one of the following aspects of the system: the processor speed, t

disk RPM, or the disk transfer rate. Which one should you pick? Why, in the practical world, is that the hardest one of the
three to improve?

The CPU costs 11 msec, the disk RPM costs 30 msec, and the transfer rate costs 3 msec. The one to double is the disk R
since that'll make the biggest difference to the time to perform a transaction. It's the hardest one of the three to increas!
because it's a mechanical system.

Grading: 5a 10 points, 5b 5 points.

| Penalty] Error \
-2 5bReason other than physical limits
-5 5a Forgot access time
-3 5b No reason
-5 5aPartial setup with most numbers
-4 S5bTransfer rate
-3 5a No disk seek on read (?77?)
-2 Didn’t use half of rotation

